edexcel

GCE

Edexcel GCE
Chemistry (6244/ 01)

J anuary 2006
Mark Scheme (Results)

1.	(a)	(i)	$2 \mathrm{Na}+\mathrm{O}_{2} \rightarrow \mathrm{Na}_{2} \mathrm{O}_{2}$ IGNORE state symbols NOT $\quad \rightarrow \mathrm{Na}_{2} \mathrm{O}$	(1 mark)
		(ii)	```\(4 \mathrm{P}+5 \mathrm{O}_{2} \rightarrow \mathrm{P}_{4} \mathrm{O}_{10}\) OR \(4 \mathrm{P}+5 \mathrm{O}_{2} \rightarrow 2 \mathrm{P}_{2} \mathrm{O}_{5}\) OR equations starting with \(\mathrm{P}_{4}\) species (1) - IGNORE state symbols balance (1) balanced equation forming phosphorus(III) oxide scores (1) only```	(2 marks)
	(b)	$\begin{equation*} \mathrm{Al}_{2} \mathrm{O}_{3}+6 \mathrm{H}^{+} \rightarrow 2 \mathrm{Al}^{3+}+3 \mathrm{H}_{2} \mathrm{O} \tag{1} \end{equation*}$ $\begin{align*} & \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{OH}^{-}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Al}(\mathrm{OH})_{4}^{-} \\ & \mathrm{OR} \mathrm{Al}_{2} \mathrm{O}_{3}+6 \mathrm{OH}^{-}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Al}(\mathrm{OH})_{6}^{3-} \\ & \mathrm{OR} \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{OH}^{-} \rightarrow 2 \mathrm{AlO}_{2}^{-}+\mathrm{H}_{2} \mathrm{O} \tag{1} \end{align*}$ H^{+}in one equation and OH^{-}in the other for acid and alkali on left of two equations. (1) IGNORE spurious species Non-ionic equations can score $3^{\text {rd }}$ mark only.		(3 marks)
	(c)	(i)	$\mathrm{mol}^{3} \mathrm{dm}^{-9}$	(1 mark)
		(ii)	$\begin{aligned} & {\left[\mathrm{OH}^{-}\right]=2\left(1.31 \times 10^{-4}\right)=2.62 \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)(1)} \\ & {\left[\mathrm{H}^{+}\right]=10^{-14} / 2.62 \times 10^{-4}=3.82 \times 10^{-11}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)} \\ & \mathrm{OR} \mathrm{pOH}=3.58(1) \\ & \mathrm{pH}=-\lg \left(3.82 \times 10^{-11}\right)=10.4(2) \\ & \mathrm{OR} \mathrm{pH} 14-3.58=10.4(2)(1) \\ & \text { NOT just } 10^{\prime} \\ & \text { If }\left[\mathrm{OH}^{-}\right]=1.31 \times 10^{-4} \mathrm{pH}=10.12(\max 2) \end{aligned}$ $\text { Consequential on }\left[\mathrm{H}^{+}\right] \rightarrow \mathrm{pH} \text { for } 3^{\text {rd }} \text { mark only if } \mathrm{pH}>7$	(3 marks)

(d)	(i)	$\mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{MgSO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ equation (1) state symbols (1) - only if species correct OR $\mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$	(2 marks)			
	(ii)barium sulphate is insoluble OR less soluble than magnesium sulphate / solubility of sulphates decreases down group (1) NOT just 'it is insoluble' and is therefore a barrier (to further reaction) OR coats solid (1)	(2 marks)				
		Total for Question: 14 marks				

2	(a)	(i)	yellow / orange/ red and precipitate / crystals / solid NOT solution	(1 mark)
		(ii)	$\mathrm{C}=\mathrm{N}$ bond (1) Rest of molecule (1) IGNORE position of NO_{2} groups	(2 marks)
		(iii)	```(warm with) Fehling's/ Benedict's solution (1) red ppt (1) mention of copper(II) oxide negates 2 'nd mark OR (warm with alkaline) ammoniacal silver nitrate / Tollens' reagent (1) silver mirror (1) reference to Ag' }\mp@subsup{}{}{2+}/\mp@subsup{\textrm{Ag}}{}{3+}\mathrm{ negates 1 }\mp@subsup{1}{}{\mathrm{ st }}\mathrm{ mark ALLOW acidified (potassium) dichromate (1) orange to green/ blue (1) NOT potassium manganate(VII)```	(2 marks)
		(iv)	ketone cannot be oxidised / not a reducing agent	(1 mark)
	(b)	(i)	HCN (1) + KCN (1) OR HCN (1) base (1) OR HCN or KCN (1) pH5-9 (1) OR KCN (1) acid (except conc $\mathrm{H}_{2} \mathrm{SO}_{4}$) (1) ALLOW CN ${ }^{-}$for KCN	(2 marks)
		(ii)	Four (1) It has geometric/ cis-trans and optical isomers/ C atom with four different groups/ chiral carbon atom/ asymmetric carbon OR it has both types of stereo-isomerism (1) - stand alone	(2 marks)

3	(a)	$\begin{aligned} & \mathrm{K}_{\mathrm{p}}=\frac{\mathrm{p}^{2}\left(\mathrm{NO}_{2}\right)(1)}{\mathrm{p}\left(\mathrm{~N}_{2} \mathrm{O}_{4}\right)} \\ & \text { NOT [] } \end{aligned}$		(1 mark)
	(b)			(5 marks)
	(c)	(i)	Reaction is endothermic (1) $K_{p} \text { increases (1) }$ Therefore equilibrium position shifts to the right / forward direction (1) $3^{\text {rd }}$ mark can only be awarded if it follows a change in K_{p}	(3 marks)
		(ii)	equilibrium mixture gets darker / more brown Consequential on answer to (c)(i)	(1 mark)
			Total for Question: 10 marks	

4	(a)	enthalpy / heat change for production of one mole of gaseous atoms (1) ALLOW 'energy change’ NOT awarded if exothermic process stated or implied Gaseous can be awarded from RHS of equation from an element in its standard state (1) ALLOW "element under standard conditions" $1 / 2 \mathrm{I}_{2}(\mathrm{~s}) \rightarrow \mathrm{I}(\mathrm{~g})$ State symbols required NOT multiples		(3 marks)
	(b)	(i)	state symbols of Li species i.e. $\operatorname{Lil}(\mathrm{s}), \mathrm{Li}(\mathrm{s}), \operatorname{Li}(\mathrm{g}), \mathrm{Li}^{+}(\mathrm{g})(\mathbf{1})$ species (1) IGNORE stoichiometry	(2 marks)
		(ii)	Either $\mathrm{LE}=-270-(+159)-(+107)-(+520)-(-295)$ OR $\begin{aligned} & -270=(+159)+(+107)+(+520)+(-295)+(\text { LE })(\mathbf{1}) \\ & -761\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)(\mathbf{1}) \end{aligned}$ If units stated these must be correct Consequential on numbers and signs	(2 marks)
	(c)	mag OR lead ALL and OR OR If a	nesium ion is small and highly/ $2+$ charged magnesium ion has high charge density (1) ing to polarisation of the (large) iodide ion (1) W distortion of electron cloud of (large) iodide ion (causing) covalency (into the lattice) heoretical value assumes magnesium iodide is 100 \%ionic magnesium iodide is not 100 \%ionic (1) oms or molecules mentioned, only the $3^{\text {rd }}$ mark is available.	(3 marks)
			Total for Question: 10 marks	

5.	(a)	(i)	$\mathrm{NH}_{3}{ }^{+} \mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{OH}\right) \mathrm{COO}^{-}$ If all bonds drawn, + must be shown on N	(1 mark)
		(ii)	high energy needed to overcome (strong) ionic attractions/ strong ionic bonds (1) between (different) zwitterions OR between molecules [if ions have been mentioned] (1) Max (1) if intermolecular forces mentioned out of context	(2 marks)
	(b)	(i)	 ALLOW $\mathrm{COOH} / \mathrm{CO}_{2} \mathrm{H}$ and IGNORE position of charge on $\mathrm{NH}_{3}{ }^{+}$unless drawn in full	(1 mark)
		(ii)	 ALLOW $\mathrm{COO}^{-} \mathrm{OR} \mathrm{CO}_{2}{ }^{-}$	(1 mark)
		(iii)	 or esterified zwitterion ALLOW COOH on acid but ester group must be drawn ALLOW substituted amide as alternative to, or in addition to, ester	(1 mark)

(c)	(i)	$\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$	(1 mark)
	(ii)	 brackets optional ALLOW -CO- at right hand side ester link (1) ALLOW -OCO- / -OOC- (as link was required in (b)(iii)) rest of repeat unit, including continuation bonds (1)	(2 marks)
(d)	(i)	hydrolysis / nucleophilic substitution/ saponification	(1 mark)
	(ii)	only goes one way / goes to completion / irreversible with $\mathrm{NaOH} /$ not an equilibrium (1) reaction with acid is reversible/ is an equilibrium (1) (so yield is improved with alkali) OR both reagents catalyse the reaction (1) hydroxide ions react with product to prevent reverse reaction (1) (so yield is improved with alkali)	(2 marks)
		Total for Question: 12 marks	

