

GCE Edexcel GCE Chemistry (6244/01)

January 2006

advancing learning, changing lives

Mark Scheme (Results)

Edexcel GCE Chemistry (6244/01)

1.	(a)	(i)	$\begin{array}{ccc} 2Na + O_2 \rightarrow Na_2O_2 & IGNORE \ state \ symbols \\ NOT & \rightarrow Na_2O \end{array}$	(1 mark)
		(ii)	$4P + 5O_2 \rightarrow P_4O_{10}$ $OR 4P + 5O_2 \rightarrow 2P_2O_5$ $OR \text{ equations starting with } P_4$ species (1) - IGNORE state symbols	
			balance (1) balanced equation forming phosphorus(III) oxide scores (1) only	(2 marks)
	(b)	Al ₂ C	$D_3 + 6H^+ \rightarrow 2AI^{3+} + 3H_2O$ (1)	
		OR I OR I H⁺ ii two	$D_3 + 2OH^- + 3H_2O \rightarrow 2AI(OH)_4^-$ AI ₂ O ₃ + 6OH ⁻ + 3H ₂ O → 2AI(OH)_6^{3-} AI ₂ O ₃ + 2OH ⁻ → 2AIO ₂ ⁻ + H ₂ O (1) n one equation and OH ⁻ in the other for acid and alkali on left of equations. (1)	
			ORE spurious species p-ionic equations can score 3 rd mark only.	(3 marks)
	(c)	(i)	mol ³ dm ⁻⁹	(1 mark)
		(ii)	$[OH^{-}] = 2(1.31 \times 10^{-4}) = 2.62 \times 10^{-4} \pmod{\text{mol}}$ (mol dm ⁻³) (1)	
			$[H^{+}] = 10^{-14} / 2.62 \times 10^{-4} = 3.82 \times 10^{-11} \text{ (mol dm}^{-3}\text{)}$ <i>OR</i> pOH = 3.58 (1)	
			pH = $-Ig(3.82x10^{-11}) = 10.4(2)$ <i>OR</i> pH 14-3.58=10.4(2) (1) <i>NOT</i> just '10'	
			If $[OH^-] = 1.31 \times 10^{-4} \text{ pH} = 10.12 \text{ (max 2)}$ Consequential on $[H^+] \rightarrow \text{pH}$ for 3^{rd} mark only if $\text{pH} > 7$	(3 marks)

(d)	(i)	$\begin{array}{l} Mg(OH)_2(s) + H_2SO_4(aq) \rightarrow MgSO_4(aq) + 2H_2O (I) \\ equation (1) \\ state symbols (1) - only if species correct \\ \end{array}$	
		$\begin{array}{c} OR\\ Mg(OH)_2(s) + 2H^+(aq) \rightarrow Mg^{2+}(aq) + 2H_2O(I) \end{array}$	(2 marks)
	(ii)	barium sulphate is insoluble OR less soluble than magnesium sulphate / solubility of sulphates decreases down group (1) NOT just 'it is insoluble'	
		and is therefore a barrier (to further reaction) OR coats solid (1)	(2 marks)
		Total for Questi	on: 14 marks

2	(a)	(i)	yellow / orange/red and precipitate / crystals / solid <i>NOT</i> solution	(1 mark)
		(ii)	C=N bond (1) Rest of molecule (1) $H = H = N = NO_2$ $C_6H_5CH = CH = NO_2$ <i>IGNORE position of NO₂ groups</i>	(2 marks)
		(iii)	(warm with) Fehling's/Benedict's solution (1) red ppt (1) mention of copper(II) oxide negates 2 nd mark OR (warm with alkaline) ammoniacal silver nitrate / Tollens' reagent (1) silver mirror (1) reference to Ag ²⁺ / Ag ³⁺ negates 1 st mark ALLOW acidified (potassium) dichromate (1) orange to green/blue (1) NOT potassium manganate(VII)	(2 marks)
		(iv)	ketone cannot be oxidised / not a reducing agent	(1 mark)
	(b)	(i)	HCN (1) + KCN (1) <i>OR</i> HCN (1) base (1) <i>OR</i> HCN or KCN (1) pH5-9 (1) <i>OR</i> KCN (1) acid (except conc H_2SO_4) (1) <i>ALLOW</i> CN ⁻ for KCN	(2 marks)
		(ii)	Four (1) It has geometric/cis-trans and optical isomers/C atom with four different groups/chiral carbon atom/asymmetric carbon <i>OR</i> it has both types of stereo-isomerism (1) - <i>stand alone</i>	(2 marks)

(C)	(i)	reduction	
		OR nucleophilic addition	(1 mark)
		<i>ALLOW</i> redox	
		NOT hydrogenation	
	(ii)	C ₆ H ₅ CH=CHCH(OH)CH ₂ NH ₂ MUST show C=C	
		OR formation of amine salt	(1 mark)
(d)	(i)	(dry) ether / ethoxyethane	(1 mark)
	(ii)	Grignard reagents react with water	
		ALLOW "It reacts with water to form an alkane"	(1 mark)
	(iii)	$C_6H_5CH=CHCH(OH)CH_2CH_3$	
	(,	C=C bond need not be shown	(1 mark)
		ALLOW C_2H_5 for CH_2CH_3	
	(iv)	Secondary Do NOT allow if primary or tertiary drawn in (iii)	(1 mark)
		Total for Questi	on: 16 marks

3	(a)		$p^{2}(NO_{2})$ (1) p(N ₂ O ₄)	(1 mark)
		NOT		
	(b)		equilibrium moles $N_2O_4 = 0.2 \ OR \ 20$ $NO_2 = 1.6 \ OR \ 160$ (1)	
			mole fractions $X_{N_2O_4} = \frac{0.2}{1.8} = 0.111 \text{ and } X_{NO_2} = \frac{1.6}{1.8} = 0.889$ (1)	
			partial pressures $p_{N_2O_4} = \frac{0.2}{1.8} \times 6.75 = 0.75$ (atm)	
			and $p_{NO_2} = \frac{1.6}{1.8} \times 6.75 = 6$ (atm) (1) 1.8 48 (1) atm (1) <i>IGNORE S.F.</i>	
			<i>Note:</i> <i>If moles</i> $NO_2 = 0.8$, $K_p = 21.6$ <i>atm</i> <i>If moles</i> $NO_2 = 0.2$ <i>and moles</i> $N_2O_4 = 0.8$, $K_p = 0.338$ <i>atm</i>	(5 marks)
	(c)	(i)	Reaction is endothermic (1)	
			K _p increases (1)	
			Therefore equilibrium position shifts to the right / forward direction (1)	
			3 rd mark can only be awarded if it follows a change in K _p	(3 marks)
		(ii)	equilibrium mixture gets darker / more brown Consequential on answer to (c)(i)	(1 mark)
			Total for Ques	tion: 10 marks

4	(a)	ALLC NOT Gase from ALLC Y ₂ I ₂ (State	enthalpy /heat change for production of one mole of gaseous atoms (1) ALLOW 'energy change' WOT awarded if exothermic process stated or implied Gaseous can be awarded from RHS of equation from an element in its standard state (1) ALLOW "element under standard conditions" $f_2 _2(s) \rightarrow (g) (1)$ State symbols required WOT multiples				
	(b)	(i)	state symbols of Li species i.e. Lil(s), Li(s), Li(g), Li ⁺ (g) (1) species (1) IGNORE stoichiometry	(2 marks)			
		(ii)	Either LE = -270 - (+159) - (+107) - (+520) - (-295) OR -270 = (+159) + (+107) + (+520) + (-295) + (LE) (1) -761 (kJ mol ⁻¹) (1) If units stated these must be correct Consequential on numbers and signs	(2 marks)			
	(c)	OR n lead ALLC and <i>OR</i> t <i>OR</i> n	nesium ion is small and highly/2+ charged nagnesium ion has high charge density (1) ing to polarisation of the (large) iodide ion (1) OW distortion of electron cloud of (large) iodide ion (causing) covalency (into the lattice) heoretical value assumes magnesium iodide is 100 % ionic nagnesium iodide is not 100 % ionic (1) coms or molecules mentioned, only the 3 rd mark is available.	(3 marks)			
		Total for Quest					

5.	(a)	(i)	$NH_3^+CH(CH_2OH)COO^-$ If all bonds drawn, + must be shown on N	(1 mark)
		(ii)	high energy needed to overcome (strong) ionic attractions/strong ionic bonds (1)between (different) zwitterions OR between molecules [<i>if ions have been mentioned</i>] (1)Max (1) if intermolecular forces mentioned out of context	(2 marks)
	(b)	(i)	$\begin{array}{c} O\\ C\\ -OH\\ H-C\\ -CH_2OH\\ NH_3^+ \end{array}$	
			ALLOW COOH / CO ₂ H and IGNORE position of charge on NH_3^+ unless drawn in full	(1 mark)
		(ii)	$ \begin{array}{c} O\\ C\\ -O^{-}\\ H-C\\ -CH_{2}OH\\ NH_{2} \end{array} $	
			$ALLOW \operatorname{COO}^{-} OR \operatorname{CO}_{2}^{-}$	(1 mark)
		(111)	$\begin{array}{cccc} & & & \\ & HO-C & H & O \\ & H-C & -C-O-C-CH_3 \\ & & & \\ & & NH_2 & H \end{array}$ or esterified zwitterion <i>ALLOW COOH on acid but ester group must be drawn</i>	
			ALLOW COOH on acid but ester group must be drawn ALLOW substituted amide as alternative to, or in addition to, ester	(1 mark)

(c)	(i)	HOCH ₂ CH ₂ OH	(1 mark)
	(ii)	$ \begin{array}{c} O & O \\ \hline O & O \\ $	
		-co]- ALLOW at right hand side ester link (1) ALLOW-0C0- / -00C- (as link was required in (b)(iii))	
		rest of repeat unit, including continuation bonds (1)	(2 marks)
(d)	(i)	hydrolysis / nucleophilic substitution/saponification	(1 mark)
	(ii)	only goes one way / goes to completion / irreversible with NaOH/not an equilibrium (1) reaction with acid is reversible/is an equilibrium (1) (so yield is improved with alkali)	
		OR both reagents catalyse the reaction (1) hydroxide ions react with product to prevent reverse reaction (1) (so yield is improved with alkali)	(2 marks)
		Total for Question	on: 12 marks

6.	(a)	vertic vertic (1)	a at 2.2 (1) cal section at 40cm ³ of sodium hydroxide (1) cal section centred between pH 8-9 and between 2 to 3 squares high e to include initial jump and finish between pH = 12-13 (1)	
		lf cur	ve drawn back to front, only 2 nd and 3 rd marks available	(4 marks)
	(b)	(i)	maintains nearly constant pH / resists change in pH (1) on adding small amounts of acid or alkali (1)	(2 marks)
		(ii)	$[H^{+}] = \frac{Ka[acid]}{[salt]} \qquad OR \qquad pH = pK_a - Ig \frac{[acid]}{[salt]} (1)$	
			$[H^{+}] = 1.78 \times 10^{-4} \times 0.25 (1)$ 0.125	
			$[H^+] = 3.56 \text{ x } 10^{-4} \text{ (mol dm}^{-3}\text{)}$	
			pH = 3.4(5) (1) IGNORE no. of decimal places but penalise pH = 3	(3 marks)
		(iii)	acid partially ionised and salt fully ionised <i>OR</i> equations (1)	
			HA + $OH^- \rightarrow A^- + H_2O$ (1) ALLOW H ⁺ + $OH^- \rightarrow H_2O$ followed by more dissociation of HA	
			$A^- + H^+ \rightarrow HA$ (1)	
			[HA] and [A ⁻] are large (relative to H ⁺ and OH ⁻ added)/ large reserves of undissociated acid and salt (and so the values of [HA] and [A ⁻] do not change significantly) (1)	
			NOTE: If no equations given for effect of adding OH ⁻ and H ⁺ , correct explanation can score (1) out of these two marks.	(4 marks)
			Total for Question	on: 13 marks
			TOTAL FOR PAPER	: 75 MARKS