

Edexcel GCE
 Chemistry

6244/01

June 2006

Results Mark Scheme

\section*{Edexcel GCE
 Chemistry | - |
| :--- |
| \vdots |
| $\underset{\sim}{7}$ |}

1. (a) (i) $2 \mathrm{Al}+3 \mathrm{Cl}_{2} \rightarrow \mathrm{Al}_{2} \mathrm{Cl}_{6}$

NOT AlCl_{3}
IGNORE state symbols
(ii) covalent (1)

ALLOW polar covalent
NOT giant covalent
NOT partially covalent
dative (covalent)/co-ordinate (1)
(b) (i) $\mathrm{SiCl}_{4}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{SiO}_{2}+4 \mathrm{HCl}$

ALLOW SiCl $4+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Si}(\mathrm{OH})_{4}+4 \mathrm{HCl}$
ALLOW SiCl $4+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{4} \mathrm{SiO}_{4}+4 \mathrm{HCl}$
ALLOW SiCl $4+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SiO}_{3}+4 \mathrm{HCl}$
(ii) Fume cupboard (1)
as $\mathbf{H C l}$ is irritant/harmful (1) NOT consequential on (b)(i)
OR
use small quantities/add slowly/with cooling (1)
due to (highly) exothermic reaction (1)
NOT "vigorous"
These marks are freestanding within the answer pairs
(c) (i) Tetrahedral/tetrahedron/triangular (based) pyramid NOT pyramid
(ii) lone pair on oxygen in water

ALLOW omission of oxygen or water

THEN

Either
cannot attack C atom (1)
because C atom too small / Cl atom too large (1)
OR
C (atom) has no low energy $\mathbf{d} / 2 d$ orbitals (1)
ALLOW "no available d orbitals"
So cannot form (dative covalent) bond (1)
OR
C (atom) has no low energy d/2d orbitals
ALLOW "no available d orbitals"
C-Cl broken first (1)
If "no 3d orbitals" $\mathbf{2}$ max
(d) oxidising (agent)/oxidant/can be reduced
(e) tin is more stable in +4 than +2 oxidation state (1) MUST have comparison
so $\mathrm{Sn}(\mathrm{IV})$ does not oxidise $\mathrm{Cl}^{-} / \mathrm{HCl}$
OR Sn(IV) not oxidising
OR $\mathrm{Sn}(\mathrm{IV})$ not reduced (by $\mathrm{Cl}^{-} / \mathrm{HCl}$)
$\mathrm{OR} \mathrm{SnO}_{2}$ reacts as a base
(1)
(therefore reaction II)
ALLOW ions

OR
(reaction I does not work) because $\mathrm{Sn}(\mathrm{IV})$ more stable than Sn (II) (1) because energy required to promote (s) electrons is less than energy gained from bond formation (1)

If "reaction I more likely" (0)

2
(a) (i) CHI_{3}

IGNORE correct name
(ii) methyl ketone / $\mathrm{CH}_{3} \mathrm{CO}$ - (1)
if also include $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH})$ OR ethanol OR ethanal then (0)
(iii) structure: (double bond must be shown)

methylbutanone
OR 3-methylbutan(-2-)one (1) ALLOW 2-methylbutan(-3-)one Name only scores on a correct structure NOT consequential on structure
(b) (i) aldehyde(s)

IGNORE carbonyl
(ii) copper(I) oxide/Cu2O /cuprous oxide

NOT copper oxide
(c) any strong acid

ALLOW HCl/conc $\mathrm{H}_{2} \mathrm{SO}_{4}$ NOT hydrogen chloride ACCEPT name or formula
If other reagents with the acid e.g. $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}(\mathbf{0})$
(d) (i) effervescence/fizzing/bubbles NOT gas evolved

NOT CO_{2} evolved
OR
solid dissolves/disappears NOT solution formed
(ii) $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{COOH}+\mathrm{NaHCO}_{3} \rightarrow \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$ correct formula of pentanoic acid (1)
balanced equation (1)
ALLOW $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CO}_{2} \mathrm{H}$ and $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CO}_{2} \mathrm{Na}$
ALLOW $-\mathrm{COO}^{-} \mathrm{Na}^{+}$but not $-\mathrm{O}-\mathrm{Na}$
$\mathrm{RCOOH}+\mathrm{NaHCO}_{3} \rightarrow \mathrm{RCOONa}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}-$ Scores $2^{\text {nd }}$ mark IGNORE R
OR R. $\mathrm{COOH}+\mathrm{HCO}_{3}{ }^{-} \rightarrow \mathrm{RCOO}^{-}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$

3 (a) (i) $-\lg (0.05)=1.3(0)$
IGNORE sig figs from this point on in this question
(ii) $\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14} / 0.05=2 \times 10^{-13}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$

OR via pOH
Correct answer with no working (1)
(b) (i) $\mathrm{K}_{\mathrm{a}}=\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] /\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]$

NOT using H^{+}instead of $\mathrm{H}_{3} \mathrm{O}^{+}$
(ii) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-1.20}$

$$
\begin{equation*}
=0.063\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \tag{1}
\end{equation*}
$$

$K_{a}=\frac{0.063^{2}}{0.500-0.063}$ (1) NOT consequential on (b)(i)
$=9.08 \times 10^{-3}$ (1) $\mathrm{mol} \mathrm{dm}^{-3}$ (1)
$=9.11 \times 10^{-3}$ if $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$not rounded
ALLOW
$K_{a}=\frac{0.063^{2}}{0.500}$
(1)
$=7.94 \times 10^{-3}$ (1) $\mathrm{mol} \mathrm{dm}^{-3}$ (1)
$=7.96 \times 10^{-3}$ if $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$not rounded

ALLOW consequential marking on numerical errors Correct answer with units and some working (4)
(c) (i) Assign the terms 'acid/base'
link the pairs (1)
(ii) presence of H^{+}from the first dissociation keeps equilibrium to left /suppresses ionisation
(d) Bromocresol green
$\mathrm{pK}_{\text {in }} /$ range/colour change (of indicator) lies in vertical section
OR
For alternative indicators $\mathrm{pK}_{\text {in }} /$ range/colour change (of indicator) lie outside vertical section (1)

4 (a) (i) enthalpy/heat/energy change/produced [NOT "required"] when one mole of gaseous ions (1)
are dissolved in excess water/ to infinite dilution (1)
(ii) Bonds formed / attraction between (1)
cation and $\delta^{-} 0 /$ lone pair (in water)
OR anion and $\delta^{+} \mathrm{H}$ (in water) (1)
If bond between anion and cation (0)
(b) as magnesium has a much smaller ion (than barium ion) (1)
and has same charge OR charge shown
(1)
so stronger attraction between ions (1)
ALLOW stronger bonds between ions
"charge density" scores 1 (out of first 2 marks)
IGNORE references to polarisation and covalency of the ions
(c) (i) cycle:
for each labelled arrow joining correct species.

Species and stoichiometry (1)
State symbols (1)
Labels appropriate to direction of arrows (1) ALLOW numerical values
ALLOW cycles using -LE
(ii) $\Delta H_{\text {solution }}=-L E+\sum \Delta H_{\text {hydration }}$ OR numbers (1)
$+5 \mathrm{~kJ} \mathrm{~mol}^{-1}(1)$
Consequential on candidate's cycle e.g.
calculation from cycle with one OH^{-}giving $+555 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (2)
BUT correct answer with working (2) even if the (c)(i) cycle is wrong
(d) Calculation of $\Delta \mathrm{H}_{\text {solution }}$ of $\mathrm{Ba}(\mathrm{OH})_{2}$ as $-55 \mathrm{~kJ} \mathrm{~mol}^{-1}$ OR
LE down by 675 but $\Delta H_{\text {hydration }}$ down by 615
ALLOW LE down but $\Delta \mathrm{H}_{\text {hydration }}$ down by less
$\therefore \Delta \mathrm{H}_{\text {solution }}$ is more exothermic (1)
\therefore solubility is greater (1)
$2^{\text {nd }}$ mark dependent on $1^{\text {st }}$
$3^{\text {rd }}$ mark dependent on $2^{\text {nd }}$
ALLOW consequential marking if $\Delta \mathrm{H}_{\text {solution }}$ less exothermic
Total 15 marks
5. (a) (i) chiral carbon marked as one to right of $-\mathrm{C}_{6} \mathrm{H}_{4-}$
(ii) Has non-superimposable mirror images

OR no plane/centre of symmetry
NOT four different groups about the C atom on its own NOT asymmetric C atom
(b) rotate (the) plane (of plane) polarised (monochromatic) light (1) (equally) in opposite directions (1)

OR
pass polarised light through sample (1)
rotate the plane (equally) in opposite directions (1)
(c) (i) $\mathrm{PCl}_{5} / \mathrm{PCl}_{3} / \mathrm{SOCl}_{2}$ OR names (1)
phosphorus(V) oxide /pentoxide $/ \mathrm{P}_{4} \mathrm{O}_{10} / \mathrm{P}_{2} \mathrm{O}_{5}$ (1)
(ii) Nucleophilic substitution
(d) bromine (1) NOT bromine water
(aqueous) sodium hydroxide/ potassium hydroxide (1)
OR
$\mathrm{LiAlH}_{4}(\mathbf{1})$ then acid/water (1)
OR
H_{2} (1) $\mathrm{Ni} / \mathrm{Pt} / \mathrm{Pd}$ (1)
OR
Na (1) ethanol (1)
$2^{\text {nd }}$ reagent depends on the $1^{\text {st }}$
Incorrect $2^{\text {nd }}$ reagent negates $1^{\text {st }}$ mark
(e) (i)

Double bond must be shown
Full structural formula must have H's
(ii) reaction with \mathbf{A} is faster/does not need a catalyst/does not need heating (1)
and gives higher yield/not reversible/not equilibrium/goes to completion (1)
(f) Any named strong acid solution (1)

ALLOW formulae with indication of state NOT (conc) $\mathrm{H}_{2} \mathrm{SO}_{4}$
NOT sulphuric acid
heat under reflux (1) - NOT stand alone but can score if (conc) $\mathrm{H}_{2} \mathrm{SO}_{4}$
given as the acid
ALLOW "heat/reflux"

OR
Any named strong aqueous alkali (heat) (1)
ALLOW formulae with indication of state
Then add named strong acid (1)
ALLOW formulae
6. (a) $\mathrm{K}_{\mathrm{c}}=\left[\mathrm{H}_{2}\right]^{2}\left[\mathrm{~S}_{2}\right]$
$\left[\mathrm{H}_{2} \mathrm{~S}^{2}\right.$
MUST be square brackets
(b)

	$\mathrm{H}_{2} \mathrm{~S}$	H_{2}	S_{2}
Number of moles at equilibrium	(0.350)	0.150	0.075
		(1)	(1)
Concentration	0.0175	0.0075	0.00375
		$\begin{gathered} \text { (1) } \\ \text { i.e. } \div 20 \end{gathered}$	

$K_{c}=[0.0075]^{2}[0.00375]$
$[0.0175]^{2}$
$=6.9 \times 10^{-4}(\mathbf{1})$ award only if concentration used $\mathrm{mol} \mathrm{dm}^{-3}(\mathbf{1})$
ALLOW consequential marking on (a) and numerical errors PENALISE anything other than 2SF in final answer Units consequential on the K_{c} expression used
(c) K_{c} does not change (1)

Change in pressure increases value of numerator more than denominator/quotient bigger, so no longer at equilibrium (1)
ALLOW fewer (gas) molecules on LHS

Equilibrium shifts to restore equality (of quotient) with K_{c} OR Equilibrium shifts to LHS (1)

If K_{c} changes $\max 1$
(d) (i) no change
(ii) Increases

If reason given, must be correct

