

Edexcel GCE Chemistry 6244/01

June 2006

Results Mark Scheme

advancing learning, changing live

Edexcel GCE Chemistry 6244/01

1.	(a)	(i)	$2Al + 3Cl_2 \rightarrow Al_2Cl_6$ NOT AlCl_3 IGNORE state symbols	(1 mark)
		(ii)	covalent (1) <i>ALLOW</i> polar covalent <i>NOT</i> giant covalent <i>NOT</i> partially covalent	
	(b)	(i)	dative (covalent)/co-ordinate (1) SiCl ₄ + 2H ₂ O \rightarrow SiO ₂ + 4HCl <i>ALLOW</i> SiCl ₄ + 4H ₂ O \rightarrow Si(OH) ₄ + 4HCl <i>ALLOW</i> SiCl ₄ + 4H ₂ O \rightarrow H ₄ SiO ₄ + 4HCl <i>ALLOW</i> SiCl ₄ + 2H ₂ O \rightarrow H ₄ SiO ₄ + 4HCl	(2 marks)
		(ii)	Fume cupboard (1) as HCI is irritant/harmful (1) NOT consequential on (b)(i)	(T mark)
			<i>OR</i> use small quantities/add slowly/with cooling (1) due to (highly) exothermic reaction (1) <i>NOT</i> "vigorous"	
			These marks are freestanding within the answer pairs	(2 marks)
	(c)	(i)	Tetrahedral/tetrahedron/triangular (based) pyramid <i>NOT</i> pyramid	(1 mark)
		(ii)	lone pair on oxygen in water (1) ALLOW omission of oxygen <u>or</u> water	
			THEN	
			<i>Either</i> cannot attack C atom (1) because C atom too small / Cl atom too large (1)	
			<i>OR</i> C (atom) has no low energy d/2d orbitals (1) <i>ALLOW "no</i> available d orbitals" So cannot form (dative covalent) bond (1)	
			<i>OR</i> C (atom) has no low energy d/2d orbitals (1) <i>ALLOW "no</i> available d orbitals" C-Cl broken first (1)	
			If "no 3d orbitals" 2 max	(3 marks)

- (d) oxidising (agent)/oxidant/can be reduced
- (e) tin is more stable in +4 than +2 oxidation state (1) MUST have comparison

so Sn(IV) does not oxidise Cl⁻/HCl OR Sn(IV) not oxidising OR Sn(IV) not reduced (by Cl⁻/HCl) OR SnO₂ reacts as a base (1) (therefore reaction II) ALLOW ions

OR

(reaction I does not work) because Sn(IV) more stable than Sn(II) (1) because energy required to promote (s) electrons is less than energy gained from bond formation (1)

If "reaction I more likely" (0)

(2 marks)

Total 13 marks

(a)	(i)	CHI3 IGNORE correct name	(1 mark)
	(ii)	methyl ketone / CH ₃ CO- (1) <i>if also include CH₃CH(OH) OR ethanol OR ethanal then</i> (0)	(1 mark)
	(iii)	structure: (double bond must be shown) (CH ₃) ₂ CHC O CH ₃ (1)	
		methylbutanone <i>OR</i> 3-methylbutan(-2-)one (1) <i>ALLOW</i> 2-methylbutan(-3-)one <i>Name only scores on a correct structure NOT consequential on</i> <i>structure</i>	(2 marks)
(b)	(i)	aldehyde(s) IGNORE carbonyl	(1 mark)
	(ii)	copper(I) oxide/Cu ₂ O /cuprous oxide NOT copper oxide	(1 mark)
(c)	any <i>ALL</i> <i>ACC</i> If ot	strong acid OW HCl/conc H₂SO₄ NOT hydrogen chloride EPT name or formula her reagents with the acid e.g. K₂Cr₂O7 (0)	(1 mark)
(d)	(i)	effervescence/fizzing/bubbles NOT gas evolved NOT CO2 evolved	
		<i>OR</i> solid dissolves/disappears <i>NOT</i> solution formed	(1 mark)
	(ii)	$CH_3(CH_2)_3COOH + NaHCO_3 \rightarrow CH_3(CH_2)_3COONa + H_2O + CO_2$ correct formula of pentanoic acid (1) balanced equation (1)	
		ALLOW $CH_3(CH_2)_3CO_2H$ and $CH_3(CH_2)_3CO_2Na$ ALLOW -COO Na ⁺ but not — O — Na	
		<i>RCOOH</i> + NaHCO ₃ → RCOONa + H ₂ O + CO ₂ - <i>Scores</i> 2^{nd} mark <i>IGNORE</i> <i>OR</i> R.COOH + HCO ₃ ⁻ → RCOO ⁻ + H ₂ O + CO ₂	R (2 morks)
			(2 111dl KS)
			Total 10 marks

(a)	(i)	- lg (0.05) = 1.3(0) IGNORE sig figs from this point on in this question	(1 mark)
	(ii)	[OH ⁻] = 1 x10 ⁻¹⁴ / 0.05 = 2 x10 ⁻¹³ (mol dm ⁻³) OR via pOH Correct answer with no working (1)	(1 mark)
(b)	(i)	$K_a = [H_2PO_4^-][H_3O^+]/[H_3PO_4]$ NOT using H ⁺ instead of H ₃ O ⁺	(1 mark)
	(ii)	$[H_3O^*] = 10^{-1.20}$ = 0.063 (mol dm ⁻³) (1)	
		$K_{a} = \underbrace{0.063^{2}}_{0.500 - 0.063} (1)$ = 9.08 x10 ⁻³ (1) mol dm ⁻³ (1) = 9.11 x10 ⁻³ if [H ₃ O ⁺] not rounded	
		ALLOW $K_a = \frac{0.063^2}{0.500}$ (1) = 7.94 x10 ⁻³ (1) mol dm ⁻³ (1) = 7.96 x 10 ⁻³ if [H ₃ O ⁺] not rounded	
		ALLOW consequential marking on numerical errors Correct answer with units and some working (4)	(4 marks)
(c)	(i)	Assign the terms 'acid/base' (1) link the pairs (1)	(2 marks)
	(ii)	presence of $H^{\scriptscriptstyle +}$ from the first dissociation keeps equilibrium to left /suppresses ionisation	(1 mark)
(d)	Bror		
	рК _{in}	/range/colour change (of indicator) lies in vertical section	
	For Outs	alternative indicators pK _{in} /range/colour change (of indicator) lie ide vertical section (1)	(2 marks)
			Total 12 marks

4	(a)	(i)	enthalpy/heat/energy change/produced [NOT "required"] when one mole of gaseous ions (1)		
			are dissolved in excess water/ to infinite dilution (1)	(2 marks)	
		(ii)	Bonds formed / attraction between (1)		
			cation and δ ⁻ O/lone pair (in water) <i>OR</i> anion and δ ⁺ H (in water) (1)		
			If bond between anion and cation (0)	(2 marks)	
	(b)		as magnesium has a much smaller ion (than barium ion) (1)		
			and has same charge OR charge shown (1)		
			so stronger attraction between ions (1) ALLOW stronger bonds between ions		
			"charge density" scores 1 (out of first 2 marks) IGNORE references to polarisation and covalency of the ions	(3 marks)	
	(c)	(i)	cycle: for each labelled arrow joining correct species.		
			$\begin{array}{c} Lattice Energy\\ Mg(OH)_{2}(s) & Mg^{2+}(g) (+)\\ 2OH^{-}(g)\\ \Delta H_{solution} & \Delta H_{hydration}\\ Mg^{2+}(aq) (+) 2OH^{-}(aq) \end{array}$		
			Species and stoichiometry (1) State symbols (1) Labels appropriate to direction of arrows (1) <i>ALLOW numerical</i> <i>values</i> <i>ALLOW</i> cycles using –LE	(3 marks)	
		(ii)	$\Delta H_{\text{solution}} = -\text{LE} + \Sigma \Delta H_{\text{hydration}} OR \text{ numbers (1)}$		
			+5 kJ mol ⁻¹ (1) Consequential on candidate's cycle e.g. calculation from cycle with one OH ⁻ giving +555 kJ mol ⁻¹ (2) BUT correct answer with working (2) even if the (c)(i) cycle is wrong	(2 marks)	

- (d) Calculation of $\Delta H_{\text{solution}}$ of Ba(OH)₂ as -55 kJ mol⁻¹ *OR* LE down by 675 but $\Delta H_{\text{hydration}}$ down by 615 *ALLOW* LE down but $\Delta H_{\text{hydration}}$ down by less (1)
 - $\therefore \Delta H_{\text{solution}}$ is more exothermic (1)
 - : solubility is greater (1)

2nd mark dependent on 1st 3rd mark dependent on 2nd

(3 marks)

ALLOW consequential marking *if* $\Delta H_{solution}$ *less* exothermic

Total 15 marks

5.	(a)	(i)	chiral carbon marked as one to right of $-C_6H_4-$	(1 mark)	
		(ii)	Has non-superimposable mirror images <i>OR</i> no plane/centre of symmetry <i>NOT</i> four different groups about the C atom <i>on its own</i> <i>NOT</i> asymmetric C atom	(1 mark	
	(b)	rotate (the) plane (of plane) polarised (monochromatic) light (1) (equally) in opposite directions (1)			
		<i>OR</i> pass rota	polarised light through sample (1) te the plane (equally) in opposite directions (1)	(2 marks)	
	(c)	(i)	PCl ₅ /PCl ₃ /SOCl ₂ OR names (1)		
			phosphorus(V) oxide /pentoxide $/P_4O_{10}/P_2O_5$ (1)	(2 marks)	
		(ii)	Nucleophilic substitution	(1 mark)	
	(d)	bror (aqu <i>OR</i> LiAll <i>OR</i> H ₂ (' <i>OR</i> Na (
		2 nd r <i>Inco</i>	(2 marks)		
	(e)	(i)	O O $R-C-OCH_2CH_3 / R-C-OC_2H_5$ Double bond must be shown Full structural formula must have H's	(1 mark)	
		(ii)	reaction with A is faster/does not need a catalyst/does not need heating (1)		
			and gives higher yield/not reversible/not equilibrium/goes to completion (1)	(2 marks)	

 (f) Any named strong acid solution (1) *ALLOW formulae with indication of state NOT* (conc) H₂SO₄ *NOT* sulphuric acid

> heat under reflux (1) - NOT stand alone but can score if (conc) H₂SO₄ given as the acid ALLOW "heat/reflux"

OR Any named strong aqueous alkali (heat) (1) ALLOW formulae with indication of state

Then add named strong acid (1)

ALLOW formulae

(2 marks)

Total 14 marks

6. (a) $K_c = \frac{[H_2]^2 [S_2]}{[H_2S]^2}$ MUST be square brackets

(b)			H_2S	H ₂	S ₂				
		Number of moles at equilibrium	(0.350)	0.150	0.075				
		Concentration	0.0175	(T) 0.0075	(T) 0.00375				
				(1) i.e. ÷ 20					
	<i>K</i> _c =	$\frac{[0.0075]^2[0.00375]}{[0.0175]^2}$							
	= 6.9×10^{-4} (1) award only if concentration used mol dm ⁻³ (1)								
	ALL	ALLOW consequential marking on (a) and numerical errors							
	Units consequential on the K_c expression used								
(c)	K _c does not change (1)								
Change in pressure increases value of numerator more than denominator/quotient bigger, so no longer at equilibrium (1) <i>ALLOW fewer (gas) molecules on LHS</i> Equilibrium shifts to restore equality (of quotient) with K _c <i>OR</i> Equilibrium shifts to LHS (1)									
								<i>lf</i> K	c changes max 1
(d)	(i)	no change				(1 mark)			
	(ii)	Increases				(1 mark)			
		n reason given, must be correct				Total 11 marks			

Total for paper 75 Marks

(1 mark)