Mark Scheme (Results) J anuary 2007

GCE

GCE Chemistry (6244/ 01)

General Guidance on Marking

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge, and for critical and imaginative thinking. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

Using the mark scheme

The mark scheme gives you:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/ phrases which are put together in a meaningless manner. Answers must be in the correct context.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/ word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
[] words inside square brackets are instructions or guidance for examiners.

Phrases/ words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.

CQ (consequential) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

There is space at the bottom of each page of this mark scheme for examiners to write their notes.

Note:

If a candidate has crossed out an answer and written new text, the crossed out work should be ignored. If the candidate has crossed out work, but written no new text, the crossed out work for that question or part question should be marked, as far as it is possible to do so.

1.	IGNORE s.f. throughout this question				
	(a)	Acid Proton or H^{+}donor Or forms H^{+}or $\mathrm{H}_{3} \mathrm{O}^{+}$ (1) Weak dissociates to a small extent Or ionises to a small extent(1)	few molecules dissociate Or incomplete dissociation Or partial dissociation	"not fully dissociated" Or "not dissociated fully"	(2 marks)
	(b)	$\begin{aligned} & 2 \mathrm{HCOOH}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightarrow 2 \mathrm{HCOONa}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+ \\ & \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\ & \mathrm{Or} \\ & \mathrm{HCOOH}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightarrow \mathrm{HCOONa}(\mathrm{aq})+\mathrm{NaHCO}_{3}(\mathrm{aq}) \\ & \\ & \text { Species + balancing (1) } \\ & \text { State symbols } \\ & \hline \end{aligned}$	$\begin{aligned} & \cdots \rightarrow 2 \mathrm{HCOONa}(\mathrm{aq})+ \\ & \mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \end{aligned}$ $\mathrm{HCO}_{2} \mathrm{H}$ for the acid $\mathrm{HCO}_{2} \mathrm{Na}$ or $\mathrm{HCOO}^{-}{ }^{+}$for salt		(2 marks)

Notes:

(c)	(i)	one acid: HCOOH Conjugate base: HCOO^{-} 1 mark for both other acid: $\mathrm{H}_{3} \mathrm{O}^{+}$ Conjugate base: $\mathrm{H}_{2} \mathrm{O}$ 1 mark for both	Correct acids and conjugate bases in either order ACCEPT $\mathrm{HCO}_{2} \mathrm{H}$ and HCO_{2}^{-} OR $\mathrm{HC}_{\mathrm{OH}}^{\prime \prime}$ $\mathrm{HC}_{\mathrm{C}^{\prime \prime}}^{\mathrm{O}}$	H^{+}for $\mathrm{H}_{3} \mathrm{O}^{+}$	(2 marks)
	(ii)	$\left(\mathrm{K}_{\mathrm{a}}\right)=\frac{\left[\mathrm{HCOO}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{HCOOH}^{2}\right]}$ Must use square brackets	$\begin{aligned} & {\left[\mathrm{H}^{+}\right] \text {instead of }\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]} \\ & {\left[\mathrm{HCO}_{2}^{-}\right] \text {and }\left[\mathrm{HCO}_{2} \mathrm{H}\right]} \end{aligned}$		(1 mark)

Notes:

Notes:

Notes:

Notes:

Notes:

	(iii)	All three \times total pressure (1) i.e. $\begin{aligned} p S O_{2} & =\frac{1.00}{10.5} \times 2.00 & \text { or } 4 / 21 \\ & =0.190(\mathrm{~atm}) & \\ p O_{2} & =\frac{0.500}{10.5} \times 2.00 & \text { or } 2 / 21 \\ & =0.0952(\mathrm{~atm}) & \\ p \text { SO }_{3} & =\frac{9.00}{10.5} \times 2.00 & \text { or } 36 / 21 \quad \text { or }^{12} / 7 \\ & =1.71(\mathrm{~atm}) & \end{aligned}$ Mark consequential on (a)(ii)			(1 mark)
	(iv)	$\begin{aligned} & K_{p}=\frac{(1.71)^{2}}{(0.190)^{2} \times(0.0952)} \\ & K_{p}=851 \quad \text { (1) } \mathrm{atm}^{-1} \end{aligned}$ Mark consequential on (a)(iii) and (a)(iv)	Answer with units and no working (2) "Correct answers" between 845 and 855 as this covers rounding up etc	Wrong units e.g. $\mathrm{mol}^{-1} \mathrm{dm}^{3}$	(2 marks)

Notes:

NOTES:

	(c)	(i)	No effect/none/zero (effect)			(1 mark)
		(ii)	Increases OR more $\mathrm{SO}_{3} /$ more sulphur trioxide OR increases amount of $\mathrm{SO}_{3} /$ sulphur trioxide			
	(d)	(i)	No effect/none/zero (effect)			(1 mark)
		(ii)	No effect/none/zero (effect)		(1 mark)	
					(1mark)	

Notes:

	3 (a)	Compound A OR a branched chain isomer Compound B Penalise "compressed" formula once only e.g. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$ $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CH}_{3}$		$-\mathrm{CH}_{3}$ as side chain -COH for aldehyde	(2 marks)
					(2 marks)

[^0]| | EXPECTED ANSWER | ACCEPT | REJ ECT | MARK |
| :---: | :---: | :---: | :---: | :---: |
| (b) |
 linkage (1)
 Remainder of the molecule
 (1)
 Mark consequential on structure given for Compound A in (a). | $\mathrm{C}_{3} \mathrm{H}_{7} \quad \mathrm{OR}$
 $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CH}_{2}$ for $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}$ $\mathrm{CH}=\mathrm{N}$
 NO_{2} groups in wrong position for remainder of molecule mark | Lack of circle in benzene ring for second mark | (2 marks) |
| (c) | | lodoform Or "triodomethane" | CH_{3} | (2 marks) |

Notes:

	(ii)	butan(-)2(-)ol IGNORE punctuation $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{C}_{2} \mathrm{H}_{5}$ or Only penalise if bond is clearly shown pointing to H ie OH is OK OH is wrong	2(-)butanol Or iso-butanol Or butane-2-ol	But-2-ol 2-hydroxybutane	(1) (1)
					(2 marks)
(d)	(i)	(It is not) superimposable on its mirror image OWTTE Or Does not have a plane of symmetry Or does not have a centre of symmetry (1)		Just "four different groups on the same molecule" OR Just " (has an) asymmetric C atom"	(1 mark)

Notes:

Notes:

4	(a)	(i)	${ }^{1 / 2} \mathrm{Br}_{2} \rightarrow \mathrm{Br}(1)$ state symbols (1) $1 / 2 \mathrm{Br}_{2}(\mathrm{~g}) \rightarrow \mathrm{Br}(\mathrm{g})$ scores only one e.g. $1 / 2 \mathrm{Br}_{2}(\mathrm{I}) \rightarrow \mathrm{Br}(\mathrm{~g})(2)$ $\mathrm{Br}_{2}(\mathrm{I}) \rightarrow 2 \mathrm{Br}(\mathrm{g})(1)$ ie for state symbols $\mathrm{Br}_{2} \rightarrow \mathrm{Br}(\mathbf{0})$		Wrong halogen or use of "X" (0)	(2 marks)
		(ii)	Energy change when 1 mol (1) of a solid/crystal/lattice (1) is formed from its (isolated) gaseous ions (1) IGNORE standard states	Heat or enthalpy for energy; energy released instead of energy change Just balanced equation e.g. $\mathrm{Na}^{+}(\mathrm{g})+\mathrm{Cl}^{-}(\mathrm{g}) \rightarrow$ $\mathrm{NaCl}(\mathrm{s})$ can score only last two marks	"energy required"	(3 marks)

Notes:

Notes:

	(ii)	MgCl_{2} has (a degree of) covalent character (1) due to polarisation of the anion (1) (by Mg^{2+} cation)		Mention of "atoms" or "molecules" scores (0) for all of (b)(ii) Just " Mg^{2+} (strongly) polarising"	(2 marks)
(c)		oup descended, radius of M^{2+} (ion) increases ation increases (1) e on ions remains the same/2+ (1) group) weaker forces of attraction between ions (1)	Reverse arguments "size" instead of "radius" Correct formulae of cations for charge mark "charge density decreases" scores one of the first two marks	Mention specifically of atoms (e.g. Mg atoms) or molecules (MgCl_{2} molecules) scores (0) for all of part (c) "weaker bonds" OR "weaker bonding"	(3 marks)
					3 marks

Notes:

Notes:

[^1]| 6 | (a) | (i) | Ethanenitrile OR Methyl cyanide OR ethanitrile OR ethanonitrile IGNORE any formula | phonetic spelling e.g. ethanenitrille | Ethenenitrile | (1 mark) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | (ii) | (Acid) hydrolysis IGNORE word "acid" before hydrolysis | phonetic spelling e.g. hydrolisis | | (1 mark) |
| | | (iii) | Step 1: any named mineral acid (eg. hydrochloric acid) or formula
 Step 2: $\mathrm{PCl}_{5} / \mathrm{SOCl}_{2}$ | Using a named alkali or formula , then acidify Just "HCl" or " $\mathrm{H}_{2} \mathrm{SO}_{4}$ " PCl_{3} | $\text { Conc } \mathrm{H}_{2} \mathrm{SO}_{4}$ Cl_{2} | (2 marks) |
| | | (iv) | $\mathrm{CH}_{3} \mathrm{COCl}+\mathrm{CH}_{3} \mathrm{NH}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{CONHCH}_{3}+\mathrm{HCl}$
 OR $\mathrm{CH}_{3} \mathrm{COCl}+2 \mathrm{CH}_{3} \mathrm{NH}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{CONHCH}_{3}+\mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Cl}$
 (1) | | | (1 mark) |

Notes:

Notes:

[^0]: Notes:

[^1]: Notes:

