

Mark Scheme (Results) January 2007

GCE

GCE Chemistry (6244/01)

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH

General Guidance on Marking

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge, and for critical and imaginative thinking. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

Using the mark scheme

The mark scheme gives you:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

/ means that the responses are alternatives and either answer should receive full credit.

() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

[] words inside square brackets are instructions or guidance for examiners.

Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is essential to the answer.

CQ (consequential) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

There is space at the bottom of each page of this mark scheme for examiners to write their notes.

Note:

If a candidate has crossed out an answer and written new text, the crossed out work should be ignored. If the candidate has crossed out work, but written no new text, the crossed out work for that question or part question should be marked, as far as it is possible to do so.

	EXPECTED ANSWER	ACCEPT	REJECT	MARK
- 11				

1.	IGNO	ORE s.f. throughout this question			
	(a)	Acid Proton or H ⁺ donor Or forms H ⁺ or H ₂ O ⁺ (1)			
		<u>Weak</u> dissociates to a small extent Or ionises to a small extent(1)	few molecules dissociate Or incomplete dissociation Or partial dissociation	"not fully dissociated" Or "not dissociated fully"	(2 marks)
	(b)	$\begin{array}{l} 2\text{HCOOH}(aq) + \text{Na}_2\text{CO}_3(aq) \rightarrow 2\text{HCOONa}(aq) + \text{CO}_2(g) + \\ \text{H}_2\text{O}(I) \\ \text{Or} \\ \text{HCOOH}(aq) + \text{Na}_2\text{CO}_3(aq) \rightarrow \text{HCOONa}(aq) + \text{NaHCO}_3(aq) \end{array}$	\rightarrow 2HCOONa(aq) + H ₂ CO ₃ (aq) HCO ₂ H for the acid HCO ₂ Na or HCOO ⁻ Na ⁺ for salt		(2 marks)
		Species + balancing (1) State symbols (1) <i>Consequential on correct species</i>			(2 1110185)

EXPECTED ANSWER	ACCEPT	REJECT	MARK

(c)	(i)	one acid: HCOOH Conjugate base: HCOO ^{$-$} 1 mark for both other acid: H ₃ O ⁺ Conjugate base: H ₂ O	Correct acids and conjugate bases in either order ACCEPT HCO ₂ H and HCO ₂ ⁻ OR HC O ₀ H	H^{+} for $H_{3}O^{+}$	
		1 mark for both			(2 marks)
	(ii)	$(K_a) = \frac{[HCOO^-][H_3O^+]}{[HCOOH]}$	$[H^+]$ instead of $[H_3O^+]$		
		Must use square brackets	[HCO₂ [−]] and [HCO₂H]		(1 mark)

	EXPECTED ANSWER	ACCEPT	REJECT	MARK

(iii)	[H ⁺] ² = K _a × [HCOOH]	Any correct expression with		
		[H ⁺] ² or correct numbers		
	OR			
	$K_a = [H']^2$	If $[H^{T}] = \sqrt{(K_a \times c)}$ quoted		
		Scores first two marks		
	OR			
	$[H^+]^2 = 1.60 \times 10^{-4} \times 0.100 $ (1)			
		abb = 4.0 as a rate (2) as		
	$[H^+] = \sqrt{1.60 \times 10^{-4} \times 0.100}$	pH = 4.8 scores (2) as		
	$=4.0\times10^{-3}(mol\ dm^{-3})$ (1)	taken		
	IGNORE sig figs			
	Max 1 If [H [*]] ² expression incorrect			
	$pH = -\log_{10}[H^+]$			
	pH = 2.40 (1)	any pH value consequential	pH = 2.39 (is a rounding	
		on $[H^+]$, provided $pH < 7$	enor) so no unita mark	
	Alternative method			
	pKa = 3.80 (1)			
	$pH = \frac{1}{2}pKa - \frac{1}{2}\log[acid]$ (1)			
	pH = 1.90 - (-0.50)			
				(3 marke)
	pH = 2.40 (1)		pH = 2.39 (is a rounding	(5 11101 K5)
 			enor) so no triru mark	

	EXPECTED ANSWER	ACCEPT	REJECT	MARK
(d) (i	$[H^{+}] = Ka \times \frac{[acid]}{[salt]}$ OR $[H^{+}] = 1.60 \times 10^{-4} \times \frac{0.0500}{0.200}$ (1) $= 4.00 \times 10^{-5} (mol \ dm^{-3})$ (1) $pH = 4.40$ (1) IGNORE sig figs		0.100 0.400 4.39 (rounding error) so no	
	OR $pH = pKa - \log_{10} \left\{ \frac{[HCOOH]}{[HCOO^{-}]} \right\} (1)$ $pH = -\log_{10}(1.60 \times 10^{-4}) - \log_{10} \left\{ \frac{0.0500}{0.200} \right\} (1)$		third mark <u>0.100</u>	
	pH = 3.80 - (-0.60) pH = 4.40 (1) IGNORE sig figs		0.400 4.39 (rounding error) so no third mark	
				(3 marks)

	EXPECTED ANSWER	ACCEPT	REJECT	MARK
(ii)	Addition of H ⁺ ions: $HCOO^- + H^+ \rightarrow HCOOH$ (1)Addition of OH ⁻ ions: $HCOOH + OH^- \rightarrow HCOO^- + H_2O$ (1)If the ionisation of sodium methanoate shown with \rightleftharpoons then max (1) out of 2 for above equations	If described in terms of $HA \Rightarrow H^+ + A^-$ shifting to left <u>Addition of OH^-ions:</u> $H^+ + OH^- \rightarrow H_2O$ must be followed by more dissociation of <i>HCOOH</i> (to restore $[H^+]$) "molecular" equations or equations described in words		
	(buffer solution has) high concentrations Or a large reservoir of both $HCOOH$ and $HCOO^-$ relative to added H^+/OH^- (1) (hence virtually no change in [H ⁺])	or notation involving HA, H ⁺ and A ⁻ . Just "large reservoir of both HCOOH and HCOO "		(3 marks) Total 16 Marks
				10tal 16 Ma

EXPECTED ANSWER	ACCEPT	REJECT	MARK

2 (a)	IGNO	DRE s.f. throughout this question		
	(i)	moles SO ₂ $(10.0 - 9.00) = 1.00 \text{ (mol)}$ moles O ₂ $(5.00 - 4.50) = 0.500 \text{ (mol)}$ moles SO ₃ 9.00 (mol) all 3 correct \rightarrow (2) 2 correct \rightarrow (1)	Multiples of the stated moles	(2 marks)
	(ii)	All three ÷ total number of moles (1) i.e. $X_{SO_2} = \frac{1.00}{10.5} (= 0.0952) \text{ or }^{2}/_{21}$ $X_{O_2} = \frac{0.500}{10.5} (= 0.0476) \text{ or }^{1}/_{21}$ $X_{SO_3} = \frac{9.00}{10.5} (= 0.857) \text{ or }^{18}/_{21} \text{ or }^{6}/_{7}$ Mark consequential on (a)(i)	Rounding to 1 sig fig	(1 mark)

EXPECTED ANSWER	ACCEPT	REJECT	MARK

(iii)	All three × total pressure (1)			
	i.e.			
	$pSO_2 = \frac{1.00}{10.5} \times 2.00$ or $4/_{21}$			
	= 0.190(atm)			
	$pO_2 = \frac{0.500}{10.5} \times 2.00$ or $^2/_{21}$			
	= 0.0952(atm)			
	$pSO_3 = \frac{9.00}{10.5} \times 2.00$ or ${}^{36}/_{21}$ or ${}^{12}/_{7}$			
	=1.71(atm)			(1 mark)
	Mark consequential on (a)(ii)			, , , , , , , , , , , , , , , , , , ,
(iv)	$(1.71)^2$			
	$K_p = \frac{1}{(0.190)^2 \times (0.0952)}$			
	$K_{\rm m} = 851$ (1) atm^{-1} (1)	Answer with units and no	Wrong units e.g. mol ⁻¹ dm ³	
		working (2)		
	Mark consequential on (a)(iii) and (a)(iv)	"Correct answers" between 845 and 855 as this covers rounding up etc		(2 marks)

	EXPECTED ANSWER	ACCEPT	REJECT	MARK

(b)	(i)	(K _p) decreases		(1 mark)
	(ii)	(K_p decreases so) fraction / quotient $\frac{p^2 SO_3}{p^2 SO_2 \times pO_2}$ has to decrease (to equal new k _p) (1)	Any Le Chatelier argument (this prevents access to 1 st mark)	
		so shifts to left hand side (1) – this mark only available if (b)(i) answer was k _p decreases.	Shifts to right, even if answer to (b)(i) was k _p increases	
		(as p_{SO_3} decreases whereas p_{SO_2} and p_{O_2} increase)		
				(2 marks)

NOTES:

EXPECTED ANSWER	ACCEPT	REJECT	MARK

(c)	(i)	No effect/none/zero (effect)		(1 mark)
	(ii)	Increases OR more SO ₃ /more sulphur trioxide OR increases amount of SO (sulphur trioxide		(4
		increases amount of SO ₃ /sulphur thoxide		(1 mark)
(d)	(i)	No effect/none/zero (effect)		(1 mark)
	(ii)	No effect/none/zero (effect)		(1mark)
				Total 13 marks

	EXPECTED ANSWER	ACCEPT	REJECT	MARK
3 (a)	$\begin{array}{c c} \hline Compound A \\ H & H & H \\ H & H & H \\ H & -C & -C & -C \\ H & H & H \\ H & H & H \\ \hline H & H & H \\ \hline OR \\ a \text{ branched chain isomer} \\ H \\ H & -C \\ H \\ H \\ -C \\ -H \\ H \\ \hline H \\ -C \\ $		-CH₃ as side chain	
	Penalise "compressed" formula once only e.g. CH ₃ CH ₂ CH ₂ CHO CH ₃ COCH ₂ CH ₃		-COH for aldehyde	(2 marks
			1	(2 marks

Notes:

		EXPECTED ANSWER	ACCEPT	REJECT	MARK
_					
	(b)	$\begin{array}{c} O_2 N \\ H \\ H \\ H \\ CH_3 CH_2 CH_2 C = N - N - N - N O_2 \end{array}$	$C_{3}H_{7}$ OR $C_{2}H_{5}CH_{2}$ for $CH_{3}CH_{2}CH_{2}$		
		H C==N linkage (1) Remainder of the molecule (1)	CH=N NO ₂ groups in wrong position for remainder of molecule mark	Lack of circle in benzene ring for second mark	
		Mark consequential on structure given for Compound A in (a).			(2 marks)
	(C)	(i) triiodomethane (1) H	Iodoform Or "triodomethane"		

CHI₃ or I-

(1)

CH₃I

(2 marks)

EXPECTED ANSWER	ACCEPT	REJECT	MARK

	(ii)	butan(-)2(-)ol	2(-)butanol	But-2-ol	(1)
		IGNORE punctuation	Or iso-butanol	2-hydroxybutane	
		$CH_3CH(OH)C_2H_5$ or	Or hutane 2 ol		
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			(1)
		Only penalise if bond is clearly shown pointing to H ie			
		O H is OK			
		OH is wrong			
					(2 marks)
(d)	(i)	(It is not) superimposable on its mirror image OWTTE		Just "four different groups on the same molecule"	
		Does not have a plane of symmetry		OR Just " (has an)	
		Or does not have a centre of symmetry (1)		asymmetric C atom"	(1 mark)

EXPECTED ANSWER	ACCEPT	REJECT	MARK

	(ii)	Rotate (the) plane (of plane) polarised (monochromatic) light (equally) in opposite directions (1) <i>OR</i> pass polarised light through sample OR use a polarimeter rotates the plane (equally) in opposite directions (1)		(1 mark)
(e)) H ₃ C F H. CH ₃	$C = C + CH_2OH$ and $C = C + CH_2OH$ $C = C + H$ have for each	90 ° formula e.g. -C = C $ $ $ $ $C = C$ $ $ $ $	(1)
	2^{nd} is	somer cq if first isomer is carboxylic acid	consequentially	(2 marks)
				Total 12 marks

EXPECTED ANSWER	ACCEPT	REJECT	MARK

4	(a)	(i)	$\frac{1}{2}Br_2 \rightarrow Br$ (1) state symbols (1) $\frac{1}{2}Br_2(g) \rightarrow Br(g)$ scores only one		Wrong halogen or use of "X" (0)	
			e.g. $1_2Br_2(I) \rightarrow Br(g)$ (2) $Br_2(I) \rightarrow 2Br(g)$ (1) ie for state symbols $Br_2 \rightarrow Br$ (0)			(2 marks)
		(ii)	Energy change when 1 mol (1)	Heat or enthalpy for energy; energy released instead of energy change	"energy required"	
			of a solid/crystal/lattice (1)	Just balanced equation e.g. Na ⁺ (g) + Cl ⁻ (g) \rightarrow NaCl(s)		
			is formed from its (isolated) gaseous ions (1) IGNORE standard states	can score only last two marks		(3 marks)

EXPECTED ANSWER	ACCEPT	REJECT	MARK

(b)	(i)	$ \begin{array}{l} \Delta H_{f} = \Delta H_{a}[Mg] + IE_{1}[Mg] + IE_{2}[Mg] + 2 \Delta H_{a} \text{ [chlorine]} + \\ 2 \text{EA}[\text{CI}] + \text{LE}[Mg\text{CI}_{2}] \end{array} $		
		Or this in words		
		Or 2EA = -(2× +122) -(+1450) -(+736) - (+150) + (-642) - (-2526) (1)		
		$= -696(kJ \ mol^{-1})$ (1) cq on first mark $EA = \frac{-696}{2}$		
		$= -348(kJ mol^{-1})$ (1) must ÷2		
		[some likely outcomes – but working must be shown] -348 scores (3) -696 or -287 or (+) 348 scores (2) -574 or (+) 696 or (+) 287 scores (1) (+) 574 scores (0)		
				(3 marks)

EXPECTED ANSWER	ACCEPT	REJECT	MARK

	(ii)	MgCl ₂ has (a degree of) covalent character (1)		Mention of "atoms" or "molecules" scores (0) for all of (b)(ii)	
		due to polarisation of the anion (1) (by Mg^{2+} cation)		Just "Mg ²⁺ (strongly) polarising"	(2 marks)
(c)	As g OR	roup descended, radius of M^{2+} (ion) increases cation increases (1)	Reverse arguments "size" instead of "radius"	Mention specifically of atoms (e.g. Mg atoms) or molecules (MgCl ₂ molecules) scores (0) for all of part (c)	
	Cha	rge on ions remains the same/2+ (1)	Correct formulae of cations for charge mark "charge density decreases" scores one of the first two marks		
	(dov	vn group) weaker forces of attraction between ions (1)		"weaker bonds" OR "weaker bonding"	(3 marks)
					Total 13 marks

EXPECTED ANSWER	ACCEPT	REJECT	MARK

5	(a)	All 4 3 N	NaMgAlSiPNaClMgClAlCl3PCl32ORORAl_2Cl6PCl5	PCl₄ ⁺ , PCl ₆ [−]		(2 marks)
	(b)	(i)	NaCl(s) + aq \rightarrow Na ⁺ (aq) + Cl ⁻ (aq) Or NaCl(s) + H ₂ O(l) \rightarrow Na ⁺ (aq) + Cl ⁻ (aq) (1) $PCl_3 + 3H_2O \rightarrow H_3PO_3 + 3HCl$ OR $PCl_5 + H_2O \rightarrow POCl_3 + 2HCl$ OR $PCl_5 + 4H_2O \rightarrow H_3PO_4 + 5HCl$ (1)		NaCl(s) + H₂O(l) → NaOH(aq) + HCl (aq)	(2 marks)
		(ii)	 NaCI: Ionic (so) dissolves (in water) (1) – both needed PCI_x: Covalent (so) reacts (in water) OR hydrolyses (in water) (1) – both needed 			(2 marks)

	EXPECTED ANSWER		EXPECTED ANSWER	ACCEPT	REJECT	MARK		
	·							
	(c) $SiCl_4$ reacts/hydrolyses, CCl_4 does not (1) [This must be clearly stated and not just implied](lone) pair of electrons (from the oxygen atom) in a water molecule (1)"le elcannot form a bond with/be donated to the C atom Or cannot be accepted by C atom (1)re old catom (1)because C has no available orbital OR no 2d orbitals in C OR C is a small atom surrounded by Cl atoms OR Cl atoms are large and surround C atom (so attack is sterically hindered) (1)		 reacts/hydrolyses, CCl₄ does not (1) s must be clearly stated and not just implied] e) pair of electrons (from the oxygen atom) in a water ecule (1) not form a bond with/be donated to the C atom cannot be accepted by C atom (1) ause C has no available orbital no 2d orbitals in C C is a small atom surrounded by CI atoms CI atoms are large and surround C atom (so attack is ically hindered) (1) 	"lone pair" for "(lone) pair of electrons" reverse argument for Si atom	CCl₄ has no d orbitals [see below] Or "CCl₄ has no 2d orbital(s)" Just "C has no d-orbital(s)"			
		Si ha	as (available) 3<i>d</i> orbital(s) (1)		SiCl ₄ has available 3d orbitals (but penalise this only once)	(5 marks)		
	(d)	(i)	$PbO_2 + 4HCl \rightarrow PbCl_2 + 2H_2O + Cl_2$	Multiples				
			Species <u>and</u> balancing (1)			(1 mark)		
		(ii)	+2 (oxidation state) becomes more stable down the group relative to +4 <i>MUST have comparison of +2 and +4 oxidation</i> <i>states</i>	Relative stabilities of Pb and Si oxidation states		(1 mark)		
						Total 13 marks		
N	Notes:							

EXPECTED ANSWER	ACCEPT	REJECT	MARK

6	(a)	(i)	Eth <u>a</u> nenitrile OR Methyl cyanide OR ethanitrile OR ethanonitrile IGNORE any formula	phonetic spelling e.g. ethanenitrille	Eth <u>e</u> nenitrile	(1 mark)
		(ii)	(Acid) hydrolysis IGNORE word "acid" before hydrolysis	phonetic spelling e.g. hydrolisis		(1 mark)
		(iii)	 Step 1: any named mineral acid (eg. hydrochloric acid) or formula Step 2: PCl₅ / SOCl₂ 	Using a named alkali or formula , <u>then</u> acidify Just "HCI" or "H ₂ SO ₄ " PCI ₃	Conc H ₂ SO ₄ Cl ₂	(2 marks)
		(iv)	$CH_{3}COCl + CH_{3}NH_{2} \rightarrow CH_{3}CONHCH_{3} + HCl$ OR $CH_{3}COCl + 2CH_{3}NH_{2} \rightarrow CH_{3}CONHCH_{3} + CH_{3}NH_{3}Cl$ (1)			(1 mark)

EXPECTED ANSWER	ACCEPT	REJECT	MARK

