

Mark Scheme (Results) January 2008

GCE

GCE Chemistry (6244) Paper 1

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the mark scheme

- 1 / means that the responses are alternatives and either answer should receive full credit.
- 2 () means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
- 3 [] words inside square brackets are instructions or guidance for examiners.
- 4 Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
- 5 ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
1.(a)(i)	lonic	Giant ionic or		1
		electrovalent		

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
1.(a)(ii)	Covalent	Giant covalent	Co <u>n</u> valent	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(b)(i)	Basic	Base or alkali or alkaline		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(b)(ii)	Acidic	Acid Weakly acidic Weak acid		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(c)(i)	$3Na_2O + 2H_3PO_4 \rightarrow 2Na_3PO_4 + 3H_2O$ OR $Na_2O + H_3PO_4 \rightarrow Na_2HPO_4 + H_2O$ OR $Na_2O + 2H_3PO_4 \rightarrow 2NaH_2PO_4 + H_2O$ (1) Ignore state symbols			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(c)(ii)	$SiO_2 + 2NaOH \rightarrow Na_2SiO_3 + H_2O$ (1) Ignore state symbols	$SiO_2 + 2OH^- \rightarrow SiO_3^{2^-} + H_2O$		1

Correct Answer	Acceptable Answers	Reject	Mark
First mark:	Two correct		3
$Al_2O_{3(5)} + 6H^+_{(aq)} \rightarrow 2Al^{3+}_{(aq)} + 3H_2O_{(l)}$ (1) This mark is for correct species and balancing	'molecular' equations with correct state symbols scores (2)		
Second mark:			
$Al_2O_{3(5)} + 2OH_{(aq)}^- + 3H_2O_{(l)} \rightarrow 2Al(OH)_{4 (aq)}^-$			
OR			
$Al_2O_{3(S)} + 6OH_{(aq)}^{-} + 3H_2O_{(l)} \rightarrow 2Al(OH)_{6(aq)}^{3-}$			
OR			
$Al_2O_{3(s)} + 2OH_{(aq)}^- \rightarrow 2AlO_{2(aq)}^- + H_2O(l)$ (1) This mark is for correct species and balancing			
Third mark is for the state symbols (1) Correct state symbols in either equation, but all species must be correct. This mark may be awarded from an unbalanced equation.			
	Correct AnswerFirst mark: $Al_2O_{3(S)} + 6H^{+}_{(aq)} \rightarrow 2Al^{3+}_{(aq)} + 3H_2O_{(l)}$ (1)This mark is for correct species and balancingSecond mark: $Al_2O_{3(S)} + 2OH^{-}_{(aq)} + 3H_2O_{(l)} \rightarrow 2Al(OH)^{-4}_{-4}_{-4}_{-4}_{-4}_{-4}_{-4}_{-4}_$	Correct AnswerAcceptable AnswersFirst mark: $Al_2O_{3(5)} + 6H^*_{(aq)} \rightarrow 2Al^{3*}_{(aq)} + 3H_2O_{(l)}$ (1) This mark is for correct species and balancingTwo correct 'molecular' equations with correct state symbols scores (2)Second mark: $Al_2O_{3(5)} + 2OH^*_{(aq)} + 3H_2O_{(l)} \rightarrow 2Al(OH)^*_{4 (aq)}$ OR $Al_2O_{3(5)} + 6OH^*_{(aq)} + 3H_2O_{(l)} \rightarrow 2Al(OH)^{3*}_{-6 (aq)}$ OR $Al_2O_{3(5)} + 6OH^*_{(aq)} + 3H_2O_{(l)} \rightarrow 2Al(OH)^{3*}_{-6 (aq)}$ OR $Al_2O_{3(s)} + 2OH^*_{(aq)} \rightarrow 2AlO^*_{-2 (aq)} + H_2O(l)$ (1) This mark is for correct species and balancingThird mark is for the state symbols species must be correct. This mark may be awarded from an unbalanced equation.(1) correct state symbols in either equation, but all species must be correct.	Correct AnswerAcceptable AnswersRejectFirst mark: $Al_2O_{3(5)} + 6H^*_{(aq)} - 2Al^{3*}_{(aq)} + 3H_2O_{(l)}$ (1) This mark is for correct species and balancingTwo correct 'molecular' equations with correct state symbols scores (2)Second mark: $Al_2O_{3(5)} + 2OH^*_{(aq)} + 3H_2O_{(l)} - 2Al(OH)^*_{4 (aq)}$ OR $Al_2O_{3(5)} + 6OH^*_{(aq)} + 3H_2O_{(l)} - 2Al(OH)^{3*}_{6 (aq)}$ OR $Al_2O_{3(5)} + 6OH^*_{(aq)} - 2AlO^*_{2 (aq)} + H_2O(l)$ (1) This mark is for correct species and balancing(1) Correct state symbols in either equation, but all species must be correct. This mark may be awarded from an unbalanced equation.

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(e)	$PbO_2 + 4HCl \rightarrow PbCl_2 + Cl_2 + 2H_2O$ Ignore state symbols	$PbO_2 + 6HCl \rightarrow H_2PbCl_4$ $Cl_2 + 2H_2O$		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(f)	First mark: Tin more stable in the +4 oxidation state (than the +2 oxidation state) whereas lead more stable in the +2 oxidation state (than in the +4 oxidation state) OR +2 oxidation state becomes more stable relative to +4 oxidation state as group descended. (1) Second Mark:		Sn ²⁺ ions less stable than Pb ²⁺ OR Pb(II) is more stable than Sn(II)	2
	(So) I_2 reduced to I^- (by Sn^{2+}) OR $Sn^{2+} + I_2 \rightarrow Sn^{4+} + 2I^-$ OR Therefore tin(II) is a strong(er) reducing agent (than lead(II)) (1)	redox reaction between Sn ²⁺ and I ₂ OR Sn ²⁺ oxidised (to Sn ⁴⁺) OR Sn(II) acts as (a strong) reducing agent		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(a)	IGNORE 'alkane' in any answer			3
	X: ester (1)		carbonyl	
	Y: both			
	and	carbon-carbon double	OH⁻ ∝	
	alcohol or hydroxyl (1)	"hydroxy"	"hydroxide"	
	Z : both alcohol or hydroxyl and aldehyde (1)	"hydroxy"	<i>OH</i> ⁻ or "hydroxide" or "carbonyl" Just the formula	
			сн	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(b)	X : no reaction (1)			3
	Y : no reaction (1)			
	Z: H H H H H H OH C C C C C OOH H H $H(1) do not award if the bond from the carbon atom is clearly to the H of the OH group$	O O—H -O ⁻ Na ⁺ or -ONa	Any formula with the alcohol group oxidised	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(c)(i)	$\begin{array}{c} CH_{3}CH_{2}CH_{2}COONa/CH_{3}CH_{2}CH_{2}COO^{-}Na^{+}/\\ H & H & H \\ H & -C & -C & -C & -C \\ H & H & H \\ H & H & H \end{array} $ (1) Allow C_{3}H_{7} / C_{2}H_{5}CH_{2} CH_{3}OH/\\ H & -C & -O & -H \\ H & H & H \\ H & H & H \\ H & H & H \\ H & H &	CH ₃ CH ₂ CH ₂ C O ^{$-Na+$ / CH₃CH₂CH₂COO^{$-$} / CH₃CH₂CH₂CO₂Na / CH₃CH₂CH₂CO₂$-$Na^{$+$}}	Carboxylic acid Or O ⁻ —Na⁺	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(c)(ii)	$\begin{array}{c} CHI_{3} / \\ H \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$			2
	/ CH ₂ CHCOONa / CH ₂ CHCO ₂ Na / /CH ₂ CHCOO ⁻ Na ⁺ / CH ₂ CHCO ₂ ⁻ Na ⁺ /CH ₂ =CHCOONa /CH ₂ =CHCO ₂ Na /CH ₂ =CHCOO ⁻ Na ⁺ /CH ₂ =CHCO ₂ ⁻ Na ⁺ (1)	CH₂CHCOO ⁻ Allow carboxylic acid as product e.g. CH₂CHCOOH		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(c)(iii)	нннн н—с—с—с—с—он онннсN			1
	/CH ₂ (OH)CH ₂ CH ₂ CH(CN)OH / CH ₂ (OH)CH ₂ CH ₂ CH(OH)CN (1)			

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
3.(a)(i)	To slow down the reaction/to stop the			2
	reaction			
	OR to quench the reaction			
	OR to freeze the (position of)	To stop equilibrium		
	equilibrium OWTTE (1)	shifting to the left		
	so that the (equilibrium) concentrations/amounts do not change (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(a)(ii)	First mark: $\begin{bmatrix} H_{2(g)} \end{bmatrix} = \begin{bmatrix} I_{2(g)} \end{bmatrix}$	If [HI] not squared, first mark only.	If first mark not awarded, total (0).	3
	OR			
	Use of $(5.0 \times 10^{-4})^2$ (1)			
	Second mark:			
	$\left[HI_{(g)}\right]^{2} = \frac{\left(5.0 \times 10^{-4}\right)^{2}}{0.019}$			
	OR			
	$0.019 = \left(\frac{5.0 \times 10^{-4}}{[HI_{(g)}]^2}\right)^2$			
	OR			
	$[HI(g)] = \int \left[\frac{(5.0 \times 10^{-4})^2}{0.019} \right] $ (1)			
	Third mark:			
	$[HI_{(g)}]$ = 3.6 x 10 ⁻³ (mol dm ⁻³) (1) Correct answer scores 3 marks. Ignore state symbols. Ignore units unless wrong. Ignore s.f.			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(b)(i)	$K_{p} = \frac{p_{HI}^{2}}{p_{H_{2}} \times p_{I_{2}}}$ Ignore position of any ()		[] scores (0)	1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
3.(b)(ii)	Each step of this calculation must be looked at. 1 st mark is for calculating equilibrium moles H ₂ = 0.2 I ₂ = 0.2 HI = 1.6 (1) 2 nd mark is for dividing these by 2 (to get mole fractions) $x_{H_2} = \frac{0.2}{2.0} = 0.1$ $x_{I_2} = \frac{0.2}{2.0} = 0.1$ 1.6	Mark consequentially		4
	$x_{HI} = \frac{1.0}{2.0} = 0.8 (1)$ 3 rd mark is for multiplying by 1.1 (to get partial pressures) $P_{H_2} = \frac{0.2}{2.0} \times 1.1$ $= 0.11 \text{ (atm)}$ $P_{I_2} = \frac{0.2}{2.0} \times 1.1$ $= 0.11 \text{ (atm)}$ $P_{HI} = \frac{1.6}{2.0} \times 1.1$ $= 0.88 \text{ (atm)} (1)$	Mark consequentially		
	4 th mark is for substituting into their expression and calculating K_p $K_p = \frac{(0.88)^2}{(0.11) \times (0.11)}$ = 64 (1) Ignore s.f.	Mark consequentially If moles HI given as 0.8, K _p = 16 max (3)		
	Correct answer with no working scores (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(b)(iii)	Same number of moles on each side OR (Total) pressure cancels OR (Pressure) units cancel (May be shown by crossing out etc. in b(ii))	'Powers cancel' OR 'They cancel' OR 'Same number of molecules on each side'	'Partial pressures cancel' OR 'mol dm ⁻³ cancel'	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(a)(i)	ΔH_6			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(a)(ii)	$\frac{\Delta H_5}{2} OR \frac{1}{2} \Delta H_5$		ΔH_5	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(b)	Either $\Delta Hf = \Delta H_2 + \Delta H_3 + \Delta H_4 + \Delta H_5 + \Delta H_6$ OR $\Delta Hf = (+178)+(1735)+2\times(+218)+2\times(-73) + (-2389)$	[First mark only if doubles both ΔH_{at} and electron affinity for hydrogen]		2
	= -186 (kJ mol ⁻¹) (1) Correct answer with no working (2) <i>Ignore kJ</i>	[2nd mark is only consequential on failure to multiply either ΔHat or electron affinity or both giving: -404 / -113 /-331 (kJ mol-1)]	+186 scores (0) +404 / +113 /+331 scores (0)	

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
4.(c)	EITHER First mark: Magnesium/Mg ion smaller (radius) than calcium/Ca ion Or the sum of the ionic radii in MgH ₂ smaller (than in CaH ₂) (1)	Magnesium ion has greater charge density than calcium ion for first mark.	Reference to 'atoms' or 'molecules' or 'H ₂ ' scores zero overall.	3
	Second mark: but charges the same (1) Third mark: (so) stronger (forces of) attraction between ions (in M_gH_2) (1) [Correct reverse arguments can score both marks] <u>OR</u> First and second mark combined: $Mg^{2+}(ion)$ or $Mg^{2+}(cation)$ smaller (radius) than Ca^{2+} (2) Third mark: (so) stronger (forces of) attraction between ions (in M_gH_2) (1) [Correct reverse arguments can score both marks] Ignore references to polarisation of the hydride ion or "covalent character" in the hydrides. Ignore references to "energy required to separate ions/break bonds"	"stronger ionic bonding" for 3 rd mark in either case.	If "H ⁺ ions" or "hydrogen ions" referred to, 3 rd mark cannot be awarded in either case If just "stronger bonding in MgH ₂ ", 3 rd mark cannot be awarded in either case	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(d)(i)	Enthalpy/energy/heat change when 1 mol of gaseous ions (1)	Heat released $X^{+}(g) + aq \rightarrow X^{+}(aq)$ and statement of energy change per mole for first mark.	Any implication of endothermic, do not award 1 st mark	2
	Is dissolved in (a large) excess of water Or Is dissolved until further dilution causes no further heat change (1)	"Added to water" or "reacts with water " instead of "dissolved"	"Dissolves completely"	
	Ignore any reference to "standard conditions"	"Infinitely dilute solution"		
	Mark independently	"Is completely surrounded by water molecules"		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(d)(ii)	$\delta^{-}O$ (in water) attracted to positive ions/cations (1) $\delta^{+}H$ (in water) attracted to negative ions/anions (1)	'forms (dative) bonds' instead of 'attracted' Just "attraction between water (molecules) and ions"	Reference to full charges on water molecules scores zero overall "energy required"	2
		(1 max)	or implication of an endothermic process scores (0) overall.	
			Dipole-dipole attractions and/or "polarisation" scores zero overall	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5.(a)(i)	One acid: $CH_3CH_2COOH(aq)$ Conjugate base: $CH_3CH_2COO^-(aq)$ (1) Other acid: $H_3O^+(aq)$ Conjugate base: $H_2O(l)$ (1)	Accept correct acids with conjugate bases in either order		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5.(a)(ii)	WEAK: dissociates/ionises to a small extent (1) OWTTE	'Few molecules dissociate' 'Incomplete' or 'partial' dissociation "Does not fully dissociate"	"ions partially dissociate"	2
	ACID: proton donor (1)	Produces H₃O ⁺ / hydrogen / H ⁺ ions	Just "contains H₃O⁺ "	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5.(b)(i)	$Ka = \frac{[CH_3CH_2COO^-][H_3O^+]}{[CH_3CH_2COOH]}$	$[H^{\dagger}]$ instead of $[H_3O^{\dagger}]$	Any expression containing [H ₂ O]	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5.(b)(ii)	$([H^{+}] =) 3.63 \times 10^{-4} \pmod{\text{dm}^{-3}} (1)$ Or $10^{-3.44}$ $[CH_3CH_2COOH] = [H^{+}]^2$ 1.30×10^{-5} Or $[CH_3CH_2COOH] = \frac{(3.63 \times 10^{-4})^2}{1.30 \times 10^{-5}} (1)$ $= 0.010 (1) \pmod{\text{dm}^{-3}} (1)$ <u>ASSUMPTIONS:</u>	If K _a expression incorrect in (b)(i) or [H ⁺] not squared, only 1 st mark available		5
	First assumption mark: negligible $[H^+]$ from ionisation of water Or $[CH_3CH_2COO^-] = [H^+]$ (1)	"No other source of H⁺ ions"	Just "CH₃CH₂COO ⁻ = H ⁺ " (ie no square brackets)	
	Second assumption mark: lonisation of the (weak) acid is negligible Or $x-[H^+] \approx x$ where x is initial concentration of CH_3CH_2COOH Or $[H+] << [HA]$ (1)	"Very slight ionisation " "the initial [HA] = equilibrium [HA]"	Any mention of non- standard conditions or 'temperature not at 298 K'	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5.(c)	$\begin{array}{l} CH_3CH_2COO^- + H_2O \ \rightleftharpoons \ / \ \rightarrow \ CH_3CH_2COOH \\ + \ OH^- \\ Or \\ CH_3CH_2COONa + H_2O \ \rightleftharpoons \ / \ \rightarrow \\ CH_3CH_2COOH + NaOH \end{array} (1) \end{array}$	$CH_3CH_2COO^- + H^+ \Rightarrow$ CH_3CH_2COOH and causes the following eqm to shift to the right $H_2O \Rightarrow H^+ + OH^-$		2
	OH ⁻ ions produced cause the solution to be alkaline (1) Mark independently	Causing an excess of OH^- ions (1)	"OH [–] ions from water"	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5.(d)(i)	Ignore "A solution of known pH which"			2
	maintains nearly constant pH OR resists change in pH (1) OWTTE			
	on adding small amounts of acid or alkali (1)			
	Mark independently			

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
5.(d)(ii)	Working MUST be checked First mark:			3
	$[H^{+}] = K_a \times \underline{[acid]} (1)$ [salt]	K _a = <u>[H⁺]x [salt]</u> [acid]		
	Second mark: Correct [acid] = 0.0025 and [salt] = 0.00375 (1)			
	Third mark: Calculation of pH correct consequential on [acid] and [salt] used.			
	$[H^+] = 1.30 \times 10^{-5} \times \frac{0.0025}{0.00375}$			
	$= 8.67 \times 10$ (mol dm ⁻³) pH = 5.06 (1)	If [salt] and [acid] inverted, pH is 4.71 (2 marks)		
	Ignore sig fig	Inverted with the original concentrations, pH = 5.19 (1		
	First mark:	mark)		
	$pH = pK_a - \log_{10} \frac{[acid]}{[salt]} $ (1) Second mark: Correct [acid] = 0.0025 and [salt] = 0.00375 (1)	In both cases, if [acid] = [0.0100] and [salt] = [0.00500], pH = 4.59 (2 marks)		
	Third mark: Calculation of pH correct consequential on [acid] and [salt] used.			
	$pH = 4.89 - \log_{10} \frac{[0.0025]}{[0.00375]} $ (1)			
	=4.89-(-0.18)			
	= 5.07 (1)	5.06		
	Ignore sig fig			

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
6.(a)(i)	Positive charge must be on the N atom The minus charge must be on the O in the C-O if no delocalisation shown	Delocalised carboxylate group with a negative charge shown	Compressed structural formula	1
Question	Correct Angular	Accontable Annuara	Deject	Mark
Number	Correct Answer	Acceptable Answers	Reject	Mark
6.(a)(ii)	(H ^{$+$} from) COOH (group) protonates the $-NH_2$ (group)	Transfer of H ⁺ from COOH to NH ₂ Or "self-protonation"	Just "protonation" Just "acid-base reaction"	1
Question	Correct Answer	Acceptable Answers	Reject	Mark
6.(a)(iii)	Read the whole answer!			2
	High energy needed to overcome (strong) ionic attractions (1) between zwitterions (1) Ignore reference to "molecules" if	"ionic bonds" or "ionic lattice" instead of "ionic attractions" between adjacent species	Just "intermolecular forces" Or H bonding Or van der Waals' forces etc award zero overall	
	clearly used in the context of attraction between ions			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6.(b)(i)	[*] NH ₃ CH ₂ COOH / [*] H ₃ NCH ₂ COOH / [*] H ₃ NCH ₂ COOH OR written right to left	$-CO_2H$ OR $-NH_3^+Cl^-$	Molecular formula	1
	$OR \qquad OH \qquad H \rightarrow C \rightarrow H \qquad H \rightarrow C \rightarrow H \qquad H^{+}_{NH_{3}}$	Or —NH₃Cl		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6.(b)(ii)	NH ₂ CH ₂ COO ⁻ / NH ₂ CH ₂ CO ₂ ⁻ / ос нсн	–COONa or –COO [−] Na ⁺	Molecular formula	1
	I NH ₂			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6.(b)(iii)	CH ₃ CONHCH ₂ COOH/	CH ₃ CONHCH ₂ CO ₂ H	Molecular formula	1
	O OH	OR 'no reaction' (1)		
	нсн			
	HN 			
	c॑ <u></u> o			
	нс́н н			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6.(b)(iv)	$NH_2CH_2COOCH_3 / H = H = H = H$	NH ₂ CH ₂ CO ₂ CH ₃		1

Question	Correct Answer	Acceptable Answers	Reject	Mark
6.(c)(i)	(Glutamic acid molecule) has four different groups attached to a C (atom) Or (Glutamic acid molecule) has four different groups attached to a chiral centre OR has mirror images which are not superimposable	Contains an asymmetric carbon (atom) Or molecule has no plane of symmetry	Just "has a chiral centre" Or Just "the molecule is asymmetrical"	1
Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6.(c)(ii)	 (the isomers) rotate the plane (or polarisation) of (plane-) polarised light (1) in opposite directions (1) Ignore any reference to polarimeter 	"rotate plane polarised light"	Just "in different directions"	2
Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6.(d)	$\begin{array}{c} H_2N(CH_2)_6NH_2 \ (1) \\ ClOC(CH_2)_4COCl \ / \\ 0 \\ \\ ClC(CH_2)_4C \\ (1) \\ [Monomers can be given in either order] \end{array}$	$\begin{array}{c} NH_2(CH_2)_6NH_2\\ HOOC(CH_2)_4COOH \ /\\ HO_2C(CH_2)_4CO_2H \ /\\ & \bigcirc & \bigcirc\\ & & & \\ HO_{}C(CH_2)_4 \ C_{}OH\\ COOH(CH_2)_4COOH\\ Or \ COCl(CH_2)_4COCl \end{array}$		2