Mark Scheme (Results) January 2008

GCE

GCE Chemistry (6244) Paper 1

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- \quad All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the mark scheme

1 / means that the responses are alternatives and either answer should receive full credit.
2 () means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
3 [] words inside square brackets are instructions or guidance for examiners.
4 Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
$5 \mathrm{ecf} / \mathrm{TE} / \mathrm{cq}$ (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(a)(i)	Ionic	Giant ionic or electrovalent		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(a)(ii)	Covalent	Giant covalent	Convalent	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(b)(i)	Basic	Base or alkali or alkaline		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(b)(ii)	Acidic	Acid Weakly acidic Weak acid		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(c)(i)	$3 \mathrm{Na}_{2} \mathrm{O}+2 \mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow 2 \mathrm{Na}_{3} \mathrm{PO}_{4}+3 \mathrm{H}_{2} \mathrm{O}$ OR $\mathrm{Na}_{2} \mathrm{O}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{HPO}_{4}+\mathrm{H}_{2} \mathrm{O}$ OR $\mathrm{Na}_{2} \mathrm{O}+2 \mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow 2 \mathrm{NaH}_{2} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \quad$ (1) Ignore state symbols			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(c)(ii)	$\mathrm{SiO}_{2}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{SiO}_{3}+\mathrm{H}_{2} \mathrm{O}$ (1) lgnore state symbols	$\mathrm{SiO}_{2}+2 \mathrm{OH}^{-} \rightarrow \mathrm{SiO}_{3}^{-2}+\mathrm{H}_{2} \mathrm{O}$		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(d)	First mark: $\mathrm{Al}_{2} \mathrm{O}_{3(\mathrm{~s})}+6 \mathrm{H}^{+}{ }_{(\mathrm{aq})} \rightarrow 2 \mathrm{Al}^{3+}{ }_{(\mathrm{aq})}+3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$ This mark is for correct species and balancing Second mark: $\mathrm{Al}_{2} \mathrm{O}_{3(\mathrm{~s})}+2 \mathrm{OH}_{(\mathrm{aq})}^{-}+3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow 2 \mathrm{Al}(\mathrm{OH})_{4(\mathrm{aq})}^{-}$ OR $\mathrm{Al}_{2} \mathrm{O}_{3(\mathrm{~s})}+6 \mathrm{OH}_{(\mathrm{aq})}^{-}+3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow 2 \mathrm{Al}(\mathrm{OH})_{6(\mathrm{aq})}^{3-}$ OR $\mathrm{Al}_{2} \mathrm{O}_{3(\mathrm{~s})}+2 \mathrm{OH}_{(\mathrm{aq})} \rightarrow 2 \mathrm{AlO}_{2(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ This mark is for correct species and balancing Third mark is for the state symbols Correct state symbols in either equation, but all species must be correct. This mark may be awarded from an unbalanced equation.	Two correct 'molecular’ equations with correct state symbols scores (2)		3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(e)	$\mathrm{PbO}_{2}+4 \mathrm{HCl} \rightarrow \mathrm{PbCl}_{2}+\mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ Ignore state symbols	$\mathrm{PbO}_{2}+6 \mathrm{HCl} \rightarrow \mathrm{H}_{2} \mathrm{PbCl}_{4}$ $\mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(f)	First mark:			2
	Tin more stable in the +4 oxidation state (than the +2 oxidation state) whereas lead more stable in the +2 oxidation state (than in the +4 oxidation state) OR +2 oxidation state becomes more stable relative to +4 oxidation state as group descended. (1) Second Mark: (So) I_{2} reduced to I^{-}(by Sn^{2+}) OR $\mathrm{Sn}^{2+}+\mathrm{I}_{2} \rightarrow \mathrm{Sn}^{4+}+2 \mathrm{I}^{-}$ OR Therefore tin (II) is a strong(er) reducing agent (than lead(II)) (1)	redox reaction between Sn^{2+} and I_{2} OR Sn^{2+} oxidised (to Sn^{4+}) OR Sn (II) acts as (a strong) reducing agent	Sn^{2+} ions less stable than Pb^{2+} OR Pb (II) is more stable than Sn (II)	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(a)	IGNORE 'alkane' in any answer X: ester (1) Y: both alkene and alcohol or hydroxyl (1)	carbon-carbon double bond "hydroxy"	carbonyl	
Z: both alcohol or hydroxyl and aldehyde (1)	"hydroxide" OH $^{-}$or "hydroxide" or "carbonyl" Just the formula			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2. (c)(i)	 (1) Allow $\mathrm{C}_{3} \mathrm{H}_{7} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CH}_{2}$ (1)	 $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COO}^{-} /$ $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Na} /$ $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}^{-} \mathrm{Na}^{+}$	Carboxylic acid Or $. . . \mathrm{O}^{-}-\mathrm{Na}^{+}$	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2. (c)(ii)	 (1) / $\mathrm{CH}_{2} \mathrm{CHCOONa} / \mathrm{CH}_{2} \mathrm{CHCO}_{2} \mathrm{Na} /$ $/ \mathrm{CH}_{2} \mathrm{CHCOO}^{-} \mathrm{Na}^{+} / \mathrm{CH}_{2} \mathrm{CHCO}_{2}^{-} \mathrm{Na}^{+}$ $/ \mathrm{CH}_{2}=\mathrm{CHCOONa} / \mathrm{CH}_{2}=\mathrm{CHCO}_{2} \mathrm{Na}$ $/ \mathrm{CH}_{2}=\mathrm{CHCOO}^{-} \mathrm{Na}^{+} / \mathrm{CH}_{2}=\mathrm{CHCO}_{2}{ }^{-} \mathrm{Na}^{+}$(1)	$\mathrm{CH}_{2} \mathrm{CHCOO}^{-}$ Allow carboxylic acid as product e.g. $\mathrm{CH}_{2} \mathrm{CHCOOH}$		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2. (c)(iii)				1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3 . (a) (i)}$	To slow down the reaction/to stop the reaction OR to quench the reaction OR to freeze the (position of) equilibrium OWTTE (1) so that the (equilibrium) concentrations/amounts do not change (1)	To stop equilibrium shifting to the left	2	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(a)(ii)	First mark: $\left[H_{2(g)}\right]=\left[I_{2(g)}\right]$ OR Use of $\left(5.0 \times 10^{-4}\right)^{2}$ Second mark: $\left[H I_{(g)}\right]^{2}=\frac{\left(5.0 \times 10^{-4}\right)^{2}}{0.019}$ OR $\left.0.019=\frac{\left(5.0 \times 10^{-4}\right.}{\left[\mathrm{HI}_{(\mathrm{g})}\right)^{2}}\right)^{2}$ OR $\begin{equation*} [\mathrm{HI}(\mathrm{~g})]=\int\left(\frac{\left(5.0 \times 10^{-4}\right)^{2}}{0.019}\right) \tag{1} \end{equation*}$ Third mark: $\begin{equation*} \left[H I_{(g)}\right]=3.6 \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \tag{1} \end{equation*}$ Correct answer scores 3 marks. Ignore state symbols. Ignore units unless wrong. Ignore s.f.	If [HI] not squared, first mark only.	If first mark not awarded, total (0).	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(b)(i)	$K_{p}=\frac{p_{H I}^{2}}{p_{H_{2}} \times p_{I_{2}}}$			
				1
	Ignore position of any () scores (0)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3. (b)(ii)	Each step of this calculation must be looked at. $1^{\text {st }}$ mark is for calculating equilibrium moles $\begin{array}{\|l} \mathrm{H}_{2}=0.2 \\ \mathrm{I}_{2}=0.2 \\ \mathrm{HI}=1.6 \tag{1} \end{array}$ $2^{\text {nd }}$ mark is for dividing these by 2 (to get mole fractions) $\begin{align*} & x_{H_{2}}=\frac{0.2}{2.0}=0.1 \\ & x_{I_{2}}=\frac{0.2}{2.0}=0.1 \\ & x_{H I}=\frac{1.6}{2.0}=0.8 \tag{1} \end{align*}$ $3^{\text {rd }}$ mark is for multiplying by 1.1 (to get partial pressures) $\begin{align*} \mathrm{P}_{\mathrm{H}_{2}} & =\frac{0.2}{2.0} \times 1.1 \\ & =0.11(\mathrm{~atm}) \\ \mathrm{P}_{\mathrm{I}_{2}}= & \frac{0.2}{2.0} \times 1.1 \\ & =0.11(\mathrm{~atm}) \\ \mathrm{P}_{\mathrm{HI}} & =\frac{1.6}{2.0} \times 1.1 \\ & =0.88(\mathrm{~atm}) \tag{1} \end{align*}$ $4^{\text {th }}$ mark is for substituting into their expression and calculating K_{p} $\begin{align*} K_{P}= & \frac{(0.88)^{2}}{(0.11) \times(0.11)} \\ = & 64 \tag{1} \end{align*}$ Ignore s.f. Correct answer with no working scores (1)	Mark consequentially Mark consequentially Mark consequentially If moles HI given as $0.8, K_{\mathrm{p}}=16 \max (3)$		4

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(b)(iii)	Same number of moles on each side	'Powers cancel'	'Partial pressures	1
	OR	OR	cancel'	
	(Total) pressure cancels	OR cancel'	OR	'mol dm ${ }^{-3}$ cancel'

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(a)(i)	ΔH_{6}			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(a)(ii)	$\frac{\Delta H_{5}}{2} O R \frac{1}{2} \Delta H_{5}$		ΔH_{5}	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(b)	Either $\Delta H f=\Delta H_{2}+\Delta H_{3}+\Delta H_{4}+\Delta H_{5}+\Delta H_{6}$ OR $\begin{aligned} & \Delta H f=(+178)+(1735)+2 \times(+218)+2 \times \\ & (-73)+(-2389) \end{aligned}$ $=-186\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ Correct answer with no working (2) Ignore kJ	[First mark only if doubles both $\Delta H_{a t}$ and electron affinity for hydrogen] [2nd mark is only consequential on failure to multiply either Δ Hat or electron affinity or both giving: $-404 /-113 /-331$ (kJ mol-1)]	+186 scores (0) $\begin{aligned} & +404 /+113 /+331 \\ & \text { scores (0) } \end{aligned}$	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4. (c)	EITHER First mark: Magnesium/Mg ion smaller (radius) than calcium/ Ca ion Or the sum of the ionic radii in MgH_{2} smaller (than in CaH_{2}) (1) Second mark: but charges the same (1) Third mark: (so) stronger (forces of) attraction between ions (in MgH_{2}) [Correct reverse arguments can score both marks] OR First and second mark combined: Mg^{2+} (ion) or Mg^{2+} (cation) smaller (radius) than Ca^{2+} Third mark: (so) stronger (forces of) attraction between ions (in MgH_{2}) [Correct reverse arguments can score both marks] Ignore references to polarisation of the hydride ion or "covalent character" in the hydrides. Ignore references to "energy required to separate ions/break bonds"	Magnesium ion has greater charge density than calcium ion for first mark. "stronger ionic bonding" for $3^{\text {rd }}$ mark in either case.	Reference to 'atoms’ or 'molecules' or ' H_{2} ' scores zero overall. If " H^{+}ions" or "hydrogen ions" referred to, $3^{\text {rd }}$ mark cannot be awarded in either case If just "stronger bonding in MgH_{2} ", $3^{\text {rd }}$ mark cannot be awarded in either case	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(d)(i)	Enthalpy/energy/heat change when 1 mol of gaseous ions (1)	Heat released.... $\mathrm{X}^{+}(\mathrm{g})+\mathrm{aq} \rightarrow \mathrm{X}^{+}(\mathrm{aq})$ and statement of energy change per mole for first mark.	Any implication of endothermic, do not award $1^{\text {st }}$ mark	2
	Is dissolved in (a large) excess of water Or Is dissolved until further dilution causes no further heat change (1)	"Added to water" or "reacts with water" instead of "dissolved" "Ignore any reference to "standard conditions" Mark independently	"Ininitely dilute solution"	"Dissolves completely" "Is completely surrounded by water molecules"

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4. (d)(ii)	$\delta^{\circ} 0$ (in water) attracted to positive ions/cations (1) $\delta^{+} \mathrm{H}$ (in water) attracted to negative ions/anions (1)	'forms (dative) bonds' instead of 'attracted' Just "attraction between water (molecules) and ions" (1 max)	Reference to full charges on water molecules scores zero overall "energy required" or implication of an endothermic process scores (0) overall. Dipole-dipole attractions and/or "polarisation" scores zero overall	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5.(a)(i)	One acid: $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}^{2}(\mathrm{aq})$ Conjugate base: $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}(\mathrm{aq)} \mathrm{(1)}$ Other acid: $\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$ Conjugate base: $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad$ (1) Ignore state symbolsAccept correct acids with conjugate bases in either order	2		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5.(a)(ii)	WEAK: dissociates/ionises to a small extent (1) OWTTE	'Few molecules dissociate' 'Incomplete' or 'partial' dissociation "Does not fully dissociate"	"ions partially dissociate"	2
	ACID: proton donor (1)	Produces $\mathrm{H}_{3} \mathrm{O}^{+} /$ hydrogen / H^{+}ions	Just "contains $\mathrm{H}_{3} \mathrm{O}^{+}$..."	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5.(b)(i)	$\mathrm{Ka}=\frac{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right]}$	$\left[\mathrm{H}^{+}\right]$instead of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$	Any expression containing $\left[\mathrm{H}_{2} \mathrm{O}\right]$	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5. (b)(ii)	$\left(\left[\mathrm{H}^{+}\right]=3.63 \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)\right.$ (1) Or $10^{-3.44}$ $\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right]=\frac{\left[\mathrm{H}^{+}\right]^{2}}{1.30 \times 10^{-5}}$ Or $\begin{equation*} \left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right]=\frac{\left(3.63 \times 10^{-4}\right)^{2}}{1.30 \times 10^{-5}} \tag{1} \end{equation*}$ ASSUMPTIONS: First assumption mark: negligible $\left[\mathrm{H}^{+}\right]$from ionisation of water $\begin{equation*} \operatorname{Or}\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}\right]=\left[\mathrm{H}^{+}\right] \tag{1} \end{equation*}$ Second assumption mark: Ionisation of the (weak) acid is negligible Or $\mathrm{x}-\left[\mathrm{H}^{+}\right] \approx \mathrm{x}$ where x is initial concentration of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$ Or $[\mathrm{H}+] \ll[\mathrm{HA}]$	If K_{a} expression incorrect in (b)(i) or [H^{+}] not squared, only $1^{\text {st }}$ mark available "No other source of H^{+} ions" "Very slight ionisation ..." "the initial [HA] = equilibrium [HA]"	Just " $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}=$ $\mathrm{H}^{+"}$ (ie no square brackets) Any mention of nonstandard conditions or 'temperature not at $298 \mathrm{~K}^{\prime}$	5

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5.(c)	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons / \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$ $+\mathrm{OH}^{-}$ Or $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons / \rightarrow$ $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{NaOH} \quad(1)$	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}+\mathrm{H}^{+} \rightleftharpoons$ $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$ and causes the following eqm to shift to the right $\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OH}^{-}$		2
	OH^{-}ions produced cause the solution to be alkaline (1) Mark independently	Causing an excess of OH^{-}ions (1)	"OH- ions from water"	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5.(d)(i)	Ignore "A solution of known pH which...." maintains nearly constant pH OR resists change in pH (1) OWTTE on adding small amounts of acid or alkali (1) Mark independently		2	

Question Number	Correct Answer	Receptable Answers	Rark	
6.(a)(i)		Delocalised carboxylate group with a negative charge shown	Compressed structural formula	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{6 . (a) (i i)}$	(H ${ }^{+}$from) COOH (group) protonates the $-\mathrm{NH}_{2}$ (group)	Transfer of H^{+}from COOH to NH_{2} Or "self-protonation"	Just "protonation" Just "acid-base reaction"	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6.(a)(iii)	Read the whole answer! High energy needed to overcome (strong) ionic attractions (1) between zwitterions (1) Ignore reference to "molecules" if clearly used in the context of attraction between ions	"ionic bonds" or "ionic lattice" instead of "ionic attractions" between adjacent species	J ust "intermolecular forces" Or H bonding Or van der Waals’ forces etc award zero overall	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6.(b)(i)	$\begin{aligned} & { }^{+} \mathrm{NH}_{3} \mathrm{CH}_{2} \mathrm{COOH} /{ }^{+} \mathrm{H}_{3} \mathrm{NCH}_{2} \mathrm{COOH} / \\ & { }^{+} \mathrm{H}_{3} \mathrm{NCH}_{2} \mathrm{COOH} \end{aligned}$ OR written right to left	$-\mathrm{CO}_{2} \mathrm{H}$ OR $-\mathrm{NH}_{3}{ }^{+} \mathrm{Cl}^{-}$ Or $-\mathrm{NH}_{3} \mathrm{Cl}$	Molecular formula	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6. (b)(ii)	$\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COO}^{-} / \mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}^{-} /$	$-\mathrm{COONa}$ or $-\mathrm{COO}^{-} \mathrm{Na}^{+}$	Molecular formula	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6.(b)(iii)	$\mathrm{CH}_{3} \mathrm{CONHCH}_{2} \mathrm{COOH} /$	$\mathrm{CH}_{3} \mathrm{CONHCH}_{2} \mathrm{CO}_{2} \mathrm{H}$	Molecular formula	1
	OR			
'no reaction' (1)				

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6.(b)(iv)		$\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}$		1

Question Number	Correct Answer	Receptable Answers	Reject	Mark
6.(c)(i)	(Glutamic acid molecule) has four different groups attached to a C (atom) Or (Glutamic acid molecule) has four different groups attached to a chiral centre	Contains an asymmetric carbon (atom) Or molecule has no plane of symmetry OR has mirror images which are not superimposable	Just "has a chiral centre"	Or ust "the molecule is asymmetrical"

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{6 . (c) (i i)}$	(the isomers) rotate the plane (or polarisation) of (plane-) polarised light (1) in opposite directions (1) Ignore any reference to polarimeter	"...rotate plane polarised light"	Just "in different directions"	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6.(d)	$\mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{NH}_{2}(1)$ $\mathrm{ClOC}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{COCl} /$ [Monomers can be given in either order]			2

