edexcel

GCE

Edexcel GCE
Chemistry (6245/01)

January 2006

Mark Scheme (Results)

1.	(a)	The emf of a half-cell measured relative to the standard hydrogen electrode (1) all solutions at $1 \mathrm{~mol} \mathrm{dm}^{-3}$ concentration and gases at 1 atm pressure $/ 101 \mathrm{kPa}$ and at a stated temperature / 298 K (1) Standalone mark ALLOW pressure of 100 kPa		(2 marks)
	(b)	(i)	Introducing another metal wire would set up its own p.d. / can only measure a potential difference / need source and sink for electrons / voltmeter requires two connections	(1 mark)
		(ii)		(3 marks)
	(c)	(i)	$2 \mathrm{Fe}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{Fe}^{2^{+}}(\mathrm{aq})+4 \mathrm{HH}^{-}(\mathrm{aq})$ or multiples OR $2 \mathrm{Fe}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{Fe}(\mathrm{OH})_{2}(\mathrm{~s})$ Species (1) balancing (1) Do not allow species mark if electrons still in equation, but allow balancing mark if $4 e$ on both sides	(2 marks)
		(ii)	$\begin{aligned} & \Delta \mathrm{E}_{\text {react }}^{\theta}=(+) 0.84(\mathrm{~V})(\mathbf{1}) \\ & \text { Greater than zero therefore feasible (1) } \end{aligned}$	(2 marks)

QWC*		(iii)	Zn oxidises preferentially to $\mathrm{Fe} /$ Zinc acts as sacrificial (anode) (1) If Sn used (and damaged), Fe oxidises preferentially (1) Disallow "oxidises more readily" $\mathrm{E}^{\theta} \mathrm{Zn}^{2+} / \mathrm{Zn}$ more negative than for Fe OR $\mathrm{E}^{\theta} \mathrm{Zn} / \mathrm{Zn}^{2+}$ more positive than for Fe OR $\mathrm{E}_{\text {cell }}^{\theta}$ for Zn being oxidised by O_{2} is more positive than for Fe being oxidised by O_{2} OR similar E^{θ} arguments related to preferential oxidation with $\mathrm{Sn}(1)$ disallow "higher" or "bigger" for more negative or more positive	(3 marks)
Total 13 marks				
2	(a)	Delocalisation / π-system (1) due to overlap of six p-orbitals OR Due to overlap of p-orbitals around the ring (1) Confers stability/ benzene at a lower energy level / more energy needed to break bonds compared with having three separate π / double bonds / cyclohexatriene, Kekule structure (1) Standalone mark		(3 marks)
	(b)	$\begin{aligned} & 1^{\text {st }} \\ & \text { cor } \\ & \text { Int } \\ & 2^{\text {nd }} \\ & \text { dis } \end{aligned}$	ep: sulphuric and nitric acid (1) entrated (1) mediate: Nitrobenzene / $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$ (1) tep: Tin / iron and conc HCl (followed by addition of alkali) (1) low Sn or Fe as catalyst	(4 marks)

(c)	(i)	$\mathrm{AlBr}_{3} / \mathrm{FeBr}_{3} / \mathrm{AlCl}_{3} / \mathrm{Al}_{2} \mathrm{Cl}_{6} / \mathrm{FeCl}_{3} / \mathrm{Fe}_{2} \mathrm{Cl}_{6}$	(1 mark)
	(ii)	$\mathrm{AlBr}_{3}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br} \mathrm{CH}_{3} \mathrm{CH}_{2}^{+}+\mathrm{AlBr}_{4}^{-}$ ALLOW $\mathrm{C}_{2} \mathrm{H}_{5}{ }^{+}$in this equation only EITHER (1) for arow Intemediate (1) (I) for Anow from CH bond OR (1) for amow (1) for arow Intemediate (י) Arrows Do not allow to $\mathrm{C}_{2} \mathrm{H}_{5}^{+}$ ALLOW to point/go to + charge ALLOW $\mathrm{C}_{2} \mathrm{H}_{5}$ in intermediate	(4 marks)
	(iii)	Electrophilic substitution	(1 mark)

QWC*	(d)	 EXPLANATION: At least two horizontal and two vertical tie-lines drawn from 60\% ethylbenzene (1) Vapour condensed and then reboiled (1) Vapour (from 60\% ethylbenzene liquid) gets richer in the more volatile component (benzene) / residue gets richer in ethylbenzene (1) Pure benzene distilled off / ethylbenzene left as residue $4^{\text {th }}$ mark not a stand alone mark If no correct tie lines drawn, $\max (2)$	(4 marks)
			17 marks

3	(a)	(i)	Forms ions which have partially filled d-orbitals OR Forms ions which have a partially filled d-subshell	(1 mark)
		(ii)	Scandium / Sc and Zinc / Zn	(1 mark)
	(b)	(i)	$\mathrm{Fe}^{\mathrm{a}^{+}}[\mathrm{Ar}] 3 \mathrm{~d}^{6}$ $\mathrm{Mn}^{2^{+}}[\mathrm{Ar}] 3 \mathrm{~d}^{5}$ (1) for both correct	(1 mark)
		(ii)	Fe^{3+} is $3 \mathrm{~d}^{5} /$ half filled d-subshell which is more stable than $3 \mathrm{~d}^{6}(\mathbf{1})$ $\mathrm{Mn}^{2^{+}}$is (already) $3 \mathrm{~d}^{5}$ (which is more stable than $3 \mathrm{~d}^{4}$) (1)	(2 marks)
	(c)		Shape (1) Bonding to correct atoms (1) (4-)	(2 marks)
	(d)		Two As atoms oxidised from +3 to +5 per mole of $\mathrm{As}_{2} \mathrm{O}_{3}$ (loss of $4 \mathrm{e}^{-}$) (1) \therefore if 5 moles oxidised, total $20 \mathrm{e}^{-}$lost $/$change in oxidation no. $=20$ (1) $\therefore 4$ moles MnO_{4}^{-}reduced, total $20 \mathrm{e}^{-}$gained / change in oxidation no. 20 \therefore each $\mathrm{Mn}(\mathrm{VII})$ gains $5 \mathrm{e}^{-} /$change in oxidation no. 5 (1) $\therefore \mathrm{Mn}(\mathrm{II}) / \mathrm{Mn}^{2+}(1)$ NOT standalone mark	(4 marks)
	(e)	(i)	$\mathrm{VO}_{3}^{-}+2 \mathrm{H}^{+} / 2 \mathrm{H}_{3} \mathrm{O}^{+} \rightarrow \mathrm{VO}_{2}^{+}+\mathrm{H}_{2} \mathrm{O} / 3 \mathrm{H}_{2} \mathrm{O}$	(1 mark)
		(ii)	No because oxidation no. of V is +5 in VO_{2}^{+}/ Oxidation no. of V unchanged (at +5)	(1 mark)
		(iii)	First green colour: VO_{2}^{+}and VO^{2+} (1) Second green colour : $\mathrm{V}^{3+} /\left[\mathrm{V}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}(\mathbf{1})$ Violet colour : $\mathrm{V}^{2+} /\left[\mathrm{V}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}(\mathbf{1})$	(3 marks)
			Total 16 marks	

4	(a)	(i)	Correct points (1) Smooth curve (1)	(2 marks)
		(ii)	First half life $15 \mathrm{~min}(\pm 1 \mathrm{~min}) \quad$ (1) Second half life $15 \mathrm{~min}(\pm 1 \mathrm{~min}) \quad$ (1) If not shown on graph max (1)	(2 marks)
		(iii)	$1^{\text {st }}$ order (1) $\mathrm{t}_{1 / 2}$ is constant (1)	(2 marks)
	(b)	(i)	Zero	(1 mark)
		(ii)	Rate $=\mathrm{k}$ [2-bromo-2-methylbutane] ALLOW a formula Mark consequentially on (a)(iii) and (b) (i)	(1 mark)
		(iii)	(1) Mark consequentially on (ii), i.e. If $S_{N} 2$ mechanism given in (b)(ii, then one mark for each arrow (2) and transition state including sign (1)	(3 marks)
	(c)		 al) attack from either side (1) efore) racemic mixture (produced) (1) Standalone mark	(3 marks)
				14 marks

5	(a)	(i)	Elimination / dehydration	(1 mark)
		(ii)	Concentrated sulphuric acid / concentrated phosphoric acid / aluminium oxide ACCEPT correct formula	(1 mark)
		(iii)	Hydrolysis	(1 mark)
		(iv)	Esterification	(1 mark)
		(v)	$\mathrm{CH}_{3} \mathrm{OH} /$ methanol	(1 mark)
	(b)	(i)	OR Lone pairs not essential Arrows may start from minus of O^{-} ALLOW CN ${ }^{-}$OR ${ }^{-} \mathrm{CN}$	(4 marks)
		(ii)	High $\left[H^{+}\right]$ insufficient CN^{-}(available for nucleophilic attack) (1) Low $\left[\mathrm{H}^{+}\right]$ insufficient $\mathrm{H}^{+} / \mathrm{HCN}$ for the second stage (1) High $\left[\mathrm{H}^{+}\right]$surpresses ionisation / shifts equilibrium to left and low $\left[\mathrm{H}^{+}\right]$ shifts equilibrium to right \max (1)	(2 marks)

(c)	(i)	(Free) radical / peroxide	(1 mark)
	(ii)	 Correct repeating unit (1) Continuation bonds dependent on a 2 carbon skeleton unit (1)	(2 marks)
	(iii)	The polymer chain lengths are different (due to different termination steps) / different size molecules/ different numbers of monomer (units)	(1 mark)
		Total 15 marks	
		TOTAL FOR PAPER: 75 MARKS	

