Edexcel GCE

Chemistry 6245/01

June 2006
advancing learning, changing live
Results Mark Scheme

Edexcel GCE
Chemistry
6245/01

1. (a) (i) Yellow/orange precipitate (allow red/any shades of red)
(ii)

(1)

rest of molecule correct (1)
(b) Hydrogen nuclei OR hydrogen atoms OR hydrogen(s) OR protons (1)
in (three) different environments (may be shown by diagram) (1)
Ratio 2:1:1 (1)
(3 marks)
Any reference to fragments or bonds scores zero
(c) (i) EITHER

$+(:) \mathrm{CN}$
Lone pairs not essential.
Arrow may start from minus of O^{-}

- The intermediate is not consequential on their first step
- The minus of the cyanide ion can be on either the C or the N
- The arrow can start from the minus of CN in step 1 (but not from the minus of CN^{-}) and can start from the minus of O^{-}in step 2
- The arrow from the bond must not go past the \mathbf{O} atom
- Lone pairs not essential
- Single step addition of HCN scores zero
- Autoionisation of $\mathrm{C}=\mathrm{O}$ can only score the last two marks ie $\max 2$

OR
(1)

(1) for intermediate

- The intermediate is not consequential on their first step
- The minus of the cyanide ion can be on either the C or the N
- The arrow can start from the minus of ${ }^{-} \mathrm{CN}$ in step 1 (but not from the minus of CN^{-}) and can start from the minus of O^{-}in step 2
- The arrow from the bond must not go past the 0 atom
- Lone pairs not essential
- Single step addition of HCN scores zero
- Autoionisation of $\mathrm{C}=\mathrm{O}$ can only score the last two marks ie $\max 2$
(ii) Nucleophilic addition

Stand alone
(d) (i)

(1) for both arrows

(1) for arrow

Note: If Br is on the wrong carbon atom, only third mark available
(ii) Electrophilic addition

Stand alone
(e) $\quad \mathrm{C}=\mathrm{O}$ is a polar bond OR O more electronegative than C (1)

QWC*

- $\mathrm{C}=\mathrm{C}$ has high electron density $\mathrm{OR} \mathrm{C}=\mathrm{C}$ is electron rich (1) IGNORE " $\mathrm{C}=\mathrm{C}$ is non-polar" and references to π bond
- $\mathrm{C}^{\delta+}$ can be attacked by a nucleophile OR (C in) $\mathrm{C}=\mathrm{O}$ can be attacked by nucleophile
OR C = C attacked by electrophile (1)

2
(a)

(1)

(1)
(2 marks)
Allow \uparrow instead of 1 and $\downarrow_{\text {instead }} \downarrow$
(b) Forms ion(s) which have a partially OR an incompletely filled d-(sub)shell OR d-orbital(s)
(c) (i) Dative (covalent) OR co-ordinate (1)

Covalent (1)
(ii) $\quad\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Ni}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]+2 \mathrm{NH}_{4}^{+}$

OR
$\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{NH}_{3} \rightarrow \mathrm{Ni}(\mathrm{OH})_{2}+4 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{NH}_{4}^{+}$
OR
$\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{OH}^{-} \rightarrow\left[\mathrm{Ni}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]+2 \mathrm{H}_{2} \mathrm{O}$
OR
$\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{OH}^{-} \rightarrow \mathrm{Ni}(\mathrm{OH})_{2}+6 \mathrm{H}_{2} \mathrm{O}$
IGNORE state symbols
IGNORE missing square brackets in any formula
(1 mark)
(iii) H^{+}removed (by $\left.\mathrm{NH}_{3} \mathrm{OR} \mathrm{OH}^{-}\right)(\mathbf{1})$

From $\left(\mathrm{H}_{2} \mathrm{O}\right)$ ligands (1)
NOT just from "complex"
(iv) Ligand exchange

OR ligand replacement
OR ligand substitution
(v) $\left[\mathrm{Ni}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]+6 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}+2 \mathrm{OH}^{-}+4 \mathrm{H}_{2} \mathrm{O}$

OR

$$
\mathrm{Ni}(\mathrm{OH})_{2}+6 \mathrm{NH}_{3} \rightarrow\left[{\left.\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}+2 \mathrm{OH}^{-}}^{-}\right.
$$

Allow formation of $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ OR $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$
cation formed (1)
balancing equation (1)
(d) d-orbitals split (in energy) by ligands (1)

QWC* ALLOW d-sublevel

```
absorbs light (in visible region) (1) NOT "uv light"
```

electron is promoted OR electron moves to a higher energy level (1)
Any mention of emission of light can only score $1^{\text {st }}$ mark

Total for question: 14 marks

3 (a) Rate of decrease OR rate of change in concentration of reactants OR rate of increase OR rate of change in concentration of products. OR change in concentration of reactants with time OR change in concentration of products with time (1)
NOT just 'amount'
Sum of the powers to which the concentrations are raised in the rate equation OR number of species involved in (up to and including) the rate determining step OR sum of partial orders if illustrated with a general rate equation (1)
'Sum of the partial orders' alone does not score.
(b) (i) Both orders correct (1)

EITHER

Expt $1+3$: double [A], doubles rate so order 1 (1)
Expt $1+2$: double $[B]$, four x rate so order 2 (1)
OR
Double [A] keeping [B] constant doubles rate so order 1 (1)
Double [B] keeping [A] constant four x rate so order 2 (1)
Omission of experiment number or keeping a concentration constant to be penalised ONCE only (1)
(ii) Rate $=\mathrm{k}[\mathrm{A}][\mathrm{B}]^{2}$.

Mark consequentially on (i)
(iii) $k=\frac{\text { rate }}{[A][B]^{2}}=\frac{0.00200}{0.100 \times(0.100)^{2}}$

$$
\begin{equation*}
=2(.00)(1) \mathrm{mol}^{-2} \mathrm{dm}^{6} \mathrm{~min}^{-1} \tag{1}
\end{equation*}
$$

Consequential on their rate equation in (ii)
Use of experiment 2 or experiment 3 can score max (1)
(iv)
$\left.\begin{array}{l}A+B \rightarrow A B \\ A B+B \xrightarrow{r d s} A B_{2}\end{array}\right\}$
(1) for first two equations
$A B_{2}+B \xrightarrow{\text { fast }} A B_{3}$
(1)

OR
$\left.\begin{array}{l}B+B \rightarrow B_{2} \\ A+B_{2} \xrightarrow{\text { rds }} A B_{2}\end{array}\right\}$ (1) for first two equations
$A B_{2}+B \xrightarrow{\text { fast }} A B_{3}$
(1)

OR

$$
\begin{align*}
& A+2 B \xrightarrow{\text { slow } / \text { rds }} A B_{2} \tag{1}\\
& A B_{2}+B \xrightarrow{\text { fast }} A B_{3} \tag{1}
\end{align*}
$$

Identifying slow(est) OR rate determining step by appropriate notation (1)
(3 marks)
$S_{\mathrm{N}} 1$ or $\mathrm{S}_{\mathrm{N}} 2$ scores zero
(c) (i)

3.3

All points plotted accurately (1) with best-fit straight line drawn (1)
(ii)

$$
\begin{aligned}
\text { Gradient eg } & =\frac{-4.25-(-3.10)}{0.00330-0.00310} \\
& =\frac{-1.15}{0.00020} \\
& =-5750(\mathrm{~K})
\end{aligned}
$$

ALLOW $=-5450$ to $-6050(\mathrm{~K})$ but MUST have a negative sign
ALLOW if gradient is left as a correct fraction such as $\mathbf{- 1 . 1 5}$ 0.00020
$\mathrm{E}_{\mathrm{a}} \quad=(+) 5750 \times 2.30 \times 8.31$

$$
=(+) 110 \mathrm{~kJ} \mathrm{~mol}^{-1} /(+) 110000 \mathrm{~J} \mathrm{~mol}^{-1}
$$

ALLOW $=(+) 104$ to $(+) 116 \mathrm{~kJ} \mathrm{~mol}^{-1}$ IGNORE S.F.
(2 $2^{\text {nd }}$ mark consequential on gradient, but value of E_{a} must be in correct units)

Total for question: 15 marks

4 (a) (i) White precipitate OR white suspension OR white solid
(ii)

2,4,6-tribromophenol (1)
rest of equation if for formation of a tribromophenol (1)

$$
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}+3 \mathrm{Br}_{2} \rightarrow \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{Br}_{3} \mathrm{OH}+3 \mathrm{HBr} \quad \text { scores }
$$

(iii)

(1 mark)
$\mathrm{C}=\mathrm{O}$ in ester must be shown
(iv) C (atom) is (very) $\delta+$ because Cl highly electronegative OR Cl electron withdrawing (1)
IGNORE references to oxygen
(so C atom) susceptible to nucleophilic attack OR (so C atom) strongly electrophilic
IGNORE references to activation energy
(b) Sn and conc hydrochloric acid (accept conc HCl) OR Fe and conc
hydrochloric acid (accept conc HCl)
IGNORE any references to NaOH
IGNORE references to Fe or Sn as a catalyst
(c) (i)

- Sodium nitrite OR NaNO_{2} OR sodium nitrate(III) (1) NOT JUST HNO2
- Hydrochloric acid OR dilute sulphuric acid OR aqueous sulphuric acid
ACCEPT HCl if qualified. Do not accept conc. sulphuric acid
Only award the hydrochloric acid mark if NaNO_{2} or KNO_{2} or HNO_{2} given as co-reagent
(ii) Below $0^{\circ} \mathrm{C}$: reaction too slow (1)

Above $5^{\circ} \mathrm{C}$: product decomposes OR diazonium ion decomposes (1) NOT HNO_{2} decomposes
(iii)

OR - O^{-} instead of -OH group
(iv) Dissolve in minimum volume of boiling solvent OR dissolve in minimum volume of hot solvent(1)
QWC* NOT JUST "small volume"
[ALLOW any specified solvent including water]
Filter hot OR filter through heated funnel (1)
Cool or leave to crystallise (1)
Filter (under suction) (1)
Wash solid with cold solvent (and leave to dry)
OR wash solid with small volume of solvent (and leave to dry) (1)

Total for question: 17 marks

5 (a) (i) EITHER
$\Delta \mathrm{E}^{\theta}=(+) 0.15(\mathrm{~V}) \mathrm{ORE}^{\theta}\left(\mathrm{MnO}_{4}{ }^{-}, \mathrm{Mn}^{2+}\right)$ more positive or greater than E^{θ} $\left(\mathrm{Cl}_{2}, \mathrm{Cl}\right)$; accept reverse argument (1)
(so) MnO_{4}^{-}reacts with $\mathrm{Cl}^{-} \mathrm{OR} \mathrm{Cl}{ }^{-}$ions form Cl_{2}
OR KMnO_{4} reacts with HCl (1)
OR
$2 \mathrm{MnO}_{4}^{-}+16 \mathrm{H}^{+}+10 \mathrm{Cl}^{-} \rightarrow 2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{Cl}_{2}(1)$
$\mathrm{E}^{\theta}=(+) 0.15(\mathrm{~V})(1)$
(ii) stated colour change of colourless to (pale) pink NOT purple OR stays (pale) pink
OR pink to colourless
OR first excess of (coloured) manganate((VII))
IGNORE "self-indicating"
(1 mark)
IGNORE references to Mn^{2+}
(b) (i) (Multiply iron half-equation by five to) cancel out electrons OR balance electrons
(ii)

$$
\begin{align*}
& \text { Moles } \mathrm{MnO}_{4}^{-}=\frac{0.0200 \times 20.10}{1000} \\
&=0.000402 \mathrm{~mol} \mathrm{MnO}_{4}^{-} \tag{1}
\end{align*}
$$

Moles Fe^{2+} per $25.0 \mathrm{~cm}^{3}=5 \times 0.000402$ $=0.00201 \mathrm{~mol} \mathrm{Fe}$ ${ }^{2+}$

Moles Fe^{2+} per $200 \mathrm{~cm}^{3}=0.00201 \times \frac{200}{25} \mathrm{~mol} \mathrm{Fe}{ }^{2+}$ $=0.01608 \mathrm{~mol} \mathrm{Fe}{ }^{2+}$ (1)

Mass of $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}=0.01608 \times 278$
$=4.47 \mathrm{~g}$ or via concentrations (1)
Percentage purity $\quad=\frac{4.47}{6.00} \times 100 \%$
= 74.5\% (1) ALLOW 74.7\% / 75\%

Correct answer + working (5)
ALLOW 2 or more sig figs
If start by dividing 6.00 , and final answer is incorrect, candidate can 278 access first three marks only.

If third step omitted, answer 9.3\% OR 9.33\% OR 9.4\%
(c) (i) $\mathrm{E}^{\theta}=+1.46-(-0.13)=(+) 1.59(\mathrm{~V})$
(ii) PbSO_{4} precipitated (1)

Total for question: 11 marks
Total for paper: 75 marks

