Mark Scheme (Results) J anuary 2007

GCE

GCE Chemistry (6245/ 01)

	EXPECTED ANSWER	ACCEPT	REJ ECT	MARK

1.	(a)	(i)	The sum of the powers to which the concentrations are raised in the rate equation Note if candidates choose to define order with respect to one species or give complete rate equation in terms of powers of ' x ' and ' y ' and explain that the order is x or y or $x+y 1$ mark	"The sum of the partial/ individual orders" if exemplified by a rate equation OR number of species/ reactants involved in (up to and including) the rate determining step	The sum of the partial/ individual orders" on its own	(1 mark)
		(ii)	$1^{\text {st }}$ order because rate halves as [A] halves in expt. $1 \rightarrow 2$ or [B] constant (1) $2^{\text {nd }}$ order because rate quadruples / increases by 2^{2} as [B] doubles in expt. $2 \rightarrow 3$ or [A] constant (1) 1 (out of 2) if incomplete or no reasons given $\text { rate }=k[A][B]^{2} \quad(\mathbf{1})$ consequential on their orders			(3 marks)
		(iii)	$\mathrm{k}=0.0080$ (1) $\mathrm{mol}^{-2} \mathrm{dm}^{6} \mathrm{~s}^{-1}$ (1) both marks consequential on rate equation IGNORE SF			(2 marks)
		(iv)	(k) increases		Any reference to endothermic reaction scores zero	(1 mark)

	EXPECTED ANSWER	ACCEPT	REJ ECT	MARK

(b)	(i)	 Shape i.e. start at origin skewed and asymptotic to x-axis minore Wrong WRONG			(1 mark)
	(ii)	$\mathrm{E}_{\text {cat }}$ to left of $\mathrm{E}_{\text {uncat }}$ and both to the right of hump	If draw energy profile could get this mark if the Es are correct and clearly marked on the profile		(1 mark)
	(iii)	Peak (more) to the right (1) Peak lower (1) OR shown on diagram		Any reference to increase in area under graph deduct 1 mark	(2 marks)
	(iv)	Manufacture of ammonia (1) Iron (1) MUST be a metal not a compound OR e.g. Hydrogenation of oils (1) Ni/ Pt/ Pd (1) Manufacture of H_{2} from CH_{4} (1) Ni (1) Explanation uses d orbitals to bond with reactants(at active sites) (1) - stand alone	Variable / more than 1/ several oxidation states	"Haber process" on its own Sulphuric acid manufacture with $\mathrm{V}_{2} \mathrm{O}_{5}$ Must have a least three oxidation states	(3 marks)

	EXPECTED ANSWER		ACCEPT	REJ ECT	MARK
	(v)	Catalysed k bigger/ Higher OR uncatalysed k lower			(1 mark)
		Total 15 marks			

	EXPECTED ANSWER	ACCEPT	REJ ECT	MARK

2	(a)	Pt electrode (1) chlorine gas at 1 atm (1) chloride ions at $1.0 \mathrm{md} \mathrm{dm}^{-3}$ (1) IGNORE references to temperature		101 kPa		(3 marks)
	(b)	(i)	$2 \mathrm{Cu}^{+}(\mathrm{aq}) \rightarrow \mathrm{Cu}(\mathrm{~s})+\mathrm{Cu}^{2+}(\mathrm{aq})$ IGNORE state symbols			(1 mark)
		(ii)	$\mathrm{E}_{\text {cell }}=+0.37 \mathrm{~V}$ OR E^{\ominus} for $\mathrm{Cu}^{+} / \mathrm{Cu}>\mathrm{E}^{\ominus}$ for $\mathrm{Cu}^{2+} / \mathrm{Cu}^{+}$(1) Is positive (and thus feasible) (1)	Could argue reverses reaction is not feasible because....		(2 marks)
		(iii)	(Copper) oxidised from +1 to +2 (1) and also reduced to zero (1) OR The Cu^{+}is oxidised to Cu^{2+} (1) and Cu^{+}also reduced to Cu (1)		A definition of disproportionation alone does not score	(2 marks)

	EXPECTED ANSWER	ACCEPT	REJ ECT	MARK

(c)	$\left(1 s^{2}\right) 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10}$ OR $\left(1 s^{2}\right) 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{0} 3 d^{10}$ OR $\left(1 s^{2}\right) 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{0}$ Ignore spaces between items Ignore punctuation				(1 mark)
(d)	(i)	ligand exchange OR ligand substitution (1) deep/ dark blue	"Nucleophilic substitution" Any type of blue that is darker than hydrated Cu (II) ions	"Substitution" on its own OR "deprotonation"	(2 marks)
	(ii)	d-orbitals split (in energy) by ligands / become non-degenerate in presence of ligands (1) absorbs energy(light in visible region) (1) electron is promoted OR electron moves to a higher energy level (1) Any mention of emission of light can only score $1^{\text {st }}$ mark Any implication of electron promotion before absorption of light can only score $1^{\text {st }}$ mark	d-sublevel The first mark may be awarded provided at some point in the answer it is clear that there a d orbitals of different energy	"UV light"	(3 marks)
	(iii)	full d subshell / all d orbitals full (1) Therefore d-d transitions impossible / a clear idea that promotion of electrons by absorbing energy is not possible(1) No d orbital splitting max 1 mark			(2 marks)

| EXPECTED ANSWER | ACCEPT | REJ ECT | MARK |
| :--- | :---: | :---: | :---: | :---: |

(e)	tetrahedral (1) range 109-110 ${ }^{\circ}$ (1) 4 (bonding) pairs of electrons repel to a position of maximum separation/ minimum repulsion (1) Accept diagram to show shape(ignore charges)	OR Sq planar (1) 90° (1) with comparison with Ni or Pt complex (1) if say square planar and then argue that 4 pairs of electrons repel as far as possible max 1	Bonds/ atoms repelling	(3 marks)
				19 marks

	EXPECTED ANSWER			ACCEPT	REJ ECT	MARK
3	(a)	All hydrogen nuclei / hydrogens atoms/ protons in same (chemical) environment				(1 mark)
	(b)	(i)	reagent (1) ethanoyl chloride / $\mathrm{CH}_{3} \mathrm{COCl}$ catalyst (1) (anhydrous) aluminium chloride / $\mathrm{AlCl}_{3} / \mathrm{Al}_{2} \mathrm{Cl}_{6}$	$\mathrm{AlBr}_{3} \mathrm{FeBr}_{3}, \mathrm{FeCl}_{3}$	Fe	(2 marks)
		(ii)	electrophilic substitution (1)	acylation Friedel-Crafts		(1 mark)

	EXPECTED ANSWER	ACCEPT	REJ ECT	MARK

		- The intermediate is not consequential on their first step - The minus of the cyanide ion can be on either the C or the \mathbf{N} - The arrow can start from the minus of ${ }^{-} \mathrm{CN}$ in step 1 (but not from the minus of CN) and can start from the minus of O^{-}in step 2 - The arrow from the bond must not go past the O atom - Lone pairs not essential - Single step addition of HCN scores zero - Autoionisation of $\mathrm{C}=\mathrm{O}$ can only score the last two marks ie $\max 2$			(3 marks)
(d)	(i)	2 enantiomers drawn	 or		(1 mark)
	(ii)	(No effect) as ketone planar (1) Attack possible from top or bottom (1) Producing racemic/ 50:50 mixture (of enantiomers) / rotations cancel out (1) no effect could appear here in the answer			(3 marks)
(e)	No OR No	sorption corresponding to $\mathrm{C}=\mathrm{O} /$ carbonyl sorption around $1700 \mathrm{~cm}^{-1}$	Peak / band	Ketone group	(1 mark)
	Total 19 marks				

	EXPECTED ANSWER	ACCEPT	REJ ECT	MARK

4	(a)	(i)	(free) radical substitution	phonetic spelling e.g. radicle	"radical nucleophilic substitution"	(1 mark)
		(ii)	UV radiation OR sunlight OR ultraviolet radiation OR UV OR UV light OR white light OR heat		"light" on its own NOT hv NOT strong light	(1 mark)
	(b)		ram lled axes, lozenge and b.pt. values (1) east 2 horizontal +2 vertical tie lines from anywhere except 100\%(1) anation our richer in more volatile/ chloropropane (1) dense and then reboil (1) chloropropane distilled off / bromopropane left as residue (1) at to 46 (or when at 46) all chloropropane boils off then. \qquad (0) for explanation		The curve must not noticeably go above or below the boiling points indicating a max or min on the curve	(5 marks)

	EXPECTED ANSWER	ACCEPT	REJ ECT	MARK

	EXPECTED ANSWER			ACCEPT	REJ ECT	MARK
5	(a)	```Moles manganate \(=0.0239 \times 0.2\) (1) \(=0.00478\) Moles bromide \(=\frac{2.46}{103}(\mathbf{1})=0.0239\) ratio \(\mathrm{MnO}_{4}^{-}: \mathrm{Br}^{-}=1: 5\) OR ratio \(\mathrm{Br}^{-}\): \(\mathrm{MnO}_{4}^{-}=5: 1\) (1) \(\mathrm{MnO}_{4}^{-}+5 \mathrm{Br}^{-}+8 \mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}+2.5 \mathrm{Br}_{2}\) species (1) balance (1) If no calculation allow correct equation marks If calculation wrong equation must be consequential on the ratio calculatedfor balance mark```		Multiples	Answers that start from the equation and then use it to derive ratio	(5 marks)
	(b)	(i)	Not oxidised by manganate(VII)/ does not react with oxidising agents OR Not hydrolysed by acid	Cannot be oxidised	unreactive	(1 mark)
		(ii)	non-biodegradable therefore fills landfill sites	Non-biodegradable therefore persists in environment	toxic gas if burned	(1 mark)
		Total 7 marks				

