

Mark Scheme (Results) January 2007

GCE

GCE Chemistry (6245/01)

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH

EXPECTED ANSWER	ACCEPT	REJECT	MARK
-----------------	--------	--------	------

1.	(a)	(i)	The sum of the powers to which the concentrations are raised in the rate equation <i>Note if candidates choose to define order with respect to one</i> <i>species or give complete rate equation in terms of powers of 'x'</i> <i>and 'y' and explain that the order is x or y or x+ y 1 mark</i>	"The sum of the partial/individual orders" if exemplified by a rate equation OR number of species/reactants involved in (up to and including) the rate determining step	The sum of the partial/individual orders" on its own	(1 mark)
		(ii)	1 st order because rate halves as [A] halves in expt. 1 → 2 or [B] constant (1) 2^{nd} order because rate quadruples / increases by 2^2 as [B] doubles in expt. 2 → 3 or [A] constant (1) 1 (out of 2) if incomplete or no reasons given rate = $k[A][B]^2$ (1) consequential on their orders			(3 marks)
		(iii)	k = 0.0080 (1) mol ⁻² dm ⁶ s ⁻¹ (1) both marks consequential on rate equation IGNORE SF			(2 marks)
		(iv)	(k) increases		Any reference to endothermic reaction scores zero	(1 mark)

EXPECTED ANSWER	ACCEPT	REJECT	MARK
		1	

(b)	(i)	Shape i.e. start at origin skewed and asymptotic to x-axis \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow			(1 mort/)
		IGNUKE WKUNY			(T mark)
	(ii)	E_{cat} to left of E_{uncat} and both to the right of hump	If draw energy profile could get this mark if the Es are correct and clearly marked on the profile		(1 mark)
	(iii)	Peak (more) to the right (1)		Any reference to	
		Peak lower (1)		increase in area	
		OR shown on diagram		under graph deduct 1 mark	(2 marks)
	(iv)	Manufacture of ammonia (1)		"Haber process"	
		Iron (1) <i>MUST be a metal not a compound OR</i>		on its own	
		e.g.		Sulphuric acid	
		Hydrogenation of oils (1)		manufacture with	
		Ni/Pt/Pd (1)		V ₂ O ₅	
		Manufacture of H_2 from CH_4 (1)			
		Ni (1)			
		Explanation		Must have a least	
		uses d orbitals to bond with reactants(at active sites) (1) - stand	Variable /more than	three oxidation	
		alone	1/several oxidation states	states	(3 marks)

EXPECTED ANSWER		ACCEPT	REJECT	MARK
(v)	Catalysed k bigger/Higher OR uncatalysed k lower			(1 mark)
				Total 15 marks

(a)	Pt el	ectrode (1)			
	chlo	rine gas at 1 atm (1)	101 kPa		
	chlo IGNC	ride ions at 1.0 md dm ⁻³ (1) DRE references to temperature			(3 marks)
(b)	(i)	$2Cu^{+}(aq) \rightarrow Cu(s) + Cu^{2+}(aq)$ IGNORE state symbols			(1 mark)
	(ii)	$E_{cell} = +0.37 V$ OR $E^{\Theta} \text{ for } Cu^{+}/Cu > E^{\Theta} \text{ for } Cu^{2+}/Cu^{+} \text{ (1)}$	<i>Could argue reverses</i> <i>reaction is not feasible</i> <i>because</i>		
		Is positive (and thus feasible) (1)			(2 marks)
	(iii)	(Copper) oxidised from +1 to +2 (1)		A definition of	
		and also reduced to zero (1)		alone does not	(2 marks)
		OR		50010	
		The Cu ⁺ is oxidised to Cu ²⁺ (1) and Cu ⁺ also reduced to Cu (1)			
-	(a) (b)	(a) Pt el chlo /GNG (b) (i) (ii) (iii)	(a)Pt electrode(1)chlorine gas at 1 atm(1)chloride ions at 1.0 md dm ⁻³ (1) <i>IGNORE references to temperature</i> (b)(i)2Cu ⁺ (aq) \rightarrow Cu(s) + Cu ²⁺ (aq) <i>IGNORE state symbols</i> (ii) $E_{cell} = +0.37 \text{ V}$ OR E^{Θ} for Cu ⁺ /Cu > E ^{Θ} for Cu ²⁺ /Cu ⁺ (1)Is positive (and thus feasible) (1)(iii)(Copper) oxidised from +1 to +2 (1)and also reduced to zero(1)ORThe Cu ⁺ is oxidised to Cu ²⁺ (1)and Cu ⁺ also reduced to Cu (1)	(a)Pt electrode(1)101 kPachlorine gas at 1 atm(1)101 kPachloride ions at 1.0 md dm ⁻³ (1) <i>IGNORE references to temperature</i> 101 kPa(b)(i) $2Cu^{*}(aq) \rightarrow Cu(s) + Cu^{2*}(aq)$ <i>IGNORE state symbolsCould argue reverses</i> (ii) $E_{cell} = +0.37$ V <i>Could argue reverses</i> P^{Θ} for Cu*/Cu > E ^{Θ} for Cu ^{2*} /Cu* (1) <i>Could argue reverses</i> Is positive (and thus feasible) (1)Is positive (and thus feasible) (1)(iii)(Copper) oxidised from +1 to +2 (1)and also reduced to zero (1)ORORThe Cu* is oxidised to Cu ²⁺ (1) and Cu* also reduced to Cu (1)	(a) Pt electrode (1) chlorine gas at 1 atm (1) chloride ions at 1.0 md dm ⁻³ (1) <i>IGNORE references to temperature</i> 101 kPa (b) (i) $2Cu^*(aq) \rightarrow Cu(s) + Cu^{2*}(aq)$ <i>IGNORE state symbols Could argue reverses</i> (ii) $E_{cell} = +0.37 V$ QR E^{Θ} for $Cu^2/Cu^* (1)$ Is positive (and thus feasible) (1) <i>Could argue reverses</i> (iii) (Copper) oxidised from +1 to +2 (1) and also reduced to zero (1) OR The Cu' is oxidised to $Cu^{2^*}(1)$ and Cu' also reduced to Cu (1)

(C)	(1s ²) <i>OR</i> (1s ²) <i>OR</i> (1s ²) Ignoi	$2s^22p^63s^23p^63d^{10}$ $2s^22p^63s^23p^64s^03d^{10}$ $2s^22p^63s^23p^63d^{10}4s^0$ re spaces between items			(1 morte)
(d)	(i)	ligand exchange OR ligand substitution deep/dark blue (1) d-orbitals split (in energy) by ligands / become non-degenerate in presence of ligands (1)	"Nucleophilic substitution" Any type of blue that is darker than hydrated Cu(II) ions d-sublevel The first mark may be	"Substitution" on its own OR "deprotonation" "UV light"	(1 mark) (2 marks)
		absorbs energy(light in visible region) (1) electron is promoted <i>OR</i> electron moves to a higher energy level (1) <i>Any mention of emission of light can only score 1st mark</i> <i>Any implication of electron promotion before absorption of light</i> <i>can only score 1st mark</i>	awarded provided at some point in the answer it is clear that there a <i>d</i> - orbitals of different energy		(3 marks)
	(iii)	full d subshell / all d orbitals full (1) Therefore d-d transitions impossible / a clear idea that promotion of electrons by absorbing energy is not possible(1)			(2 marks)
	(d)	(i) (i) <i>OR</i> (1s ²) <i>OR</i> (1s ²) <i>I</i> gnoi Ignoi	(i) (i) P or	(i) $P_{R}^{(15)} P_{S}^{(15)} P_{S}$	(o) (17) Str 2 vo op of or OR (17) Str 2 vo op of or OR (15) Str 2 vo op of or OR (15) Str 2 vo op of or OR (15) Str 2 vo op of or OR (15) Str 2 vo op of or OR (15) Str 2 vo op of or OR (15) Str 2 vo op of or OR (15) Str 2 vo op of or OR (15) Str 2 vo op of or OR (15) Str 2 vo op of or OR (15) Str 2 vo op of or OR (15) Str 2 vo op of or OR (16) (17) Illigand exchange "Nucleophilic substitution" (17) OR "Substitution (1) (10) (10) Illigand substitution (1) Any type of blue that is darker than hydrated Cu(II) (10) (11) presence of ligands (1) d-sublevel (11) absorbs energy(light in visible region) (1) electron is promoted OR electron moves to a higher energy level (1) Any mention of electron promotion before absorption of light can only score 1 rd mark Any implication of electron promotion before absorption of light can only score 1 rd mark (11) full d subshell / all d orbitals full (1) Therefore d-d transitions impossible / a clear idea that promotion of electrons by absorbing energy is not possible(1) No d orbital splitting max 1 mark

	EXPECTED ANSWER	ACCEPT	REJECT	MARK
 1				
(e)	tetrahedral (1)	OR Sq planar (1) 90° (1)		
	range 109 - 110° (1)	with comparison with Ni or Pt complex (1)		
	4 (bonding) pairs of electrons repel to a position of maximum		Bonds/atoms	
	Accept diagram to show shape(ignore charges)	then argue that 4 pairs of	repeiling	(3 marks)
		electrons repel as far as possible max 1		
				Total 19 marks

EXPECTED ANSWER	ACCEPT	REJECT	MARK
-----------------	--------	--------	------

3	(a)	All h envi	ydrogen nuclei / hydrogens atoms/ protons in same (chemical) ronment			(1 mark)
	(b)	(i)	reagent (1) ethanoyl chloride / CH ₃ COCI <u>catalyst (1)</u> (anhydrous) aluminium chloride / AICI ₃ /AI ₂ CI ₆	AIBr ₃ FeBr ₃ , FeCl ₃	Fe	(2 marks))
		(ii)	electrophilic substitution (1)	acylation Friedel-Crafts		(1 mark)

EXPECTED ANSWER	ACCEPT	REJECT	MARK

(iii)	AICL ₃ + CH ₃ COCL \longrightarrow CH ₃ C \oplus + ALCL ₄ \oplus (1) this could be shown as part of the mecha	anism	Any arrows to C of CH ₃ rather than of CO	
	$(1) \text{ for arrow} \qquad (1) \text{ for intermediate-needs +ve charge}$ Either: $(1) \int e^{i\theta} c^{-cH_3} \rightarrow (1) \int e^{i\theta} c^{-cH_3} c^{$	(1) for arrow from C-H		
	OR: $ \begin{array}{c} & & & & \\ & & \\ & & \\ & & \\ & \\ & \\ & $	(1) for arrow		

		EXPECTED ANSWER	ACCEPT	REJECT	MARK
 			T	1	1
		$ \begin{array}{c} \begin{pmatrix} & + \\ & - \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$			
		Notes:			
		 1st curved arrow from benzene ring of electrons towards C of COCH₃ (1) ALLOW the "+" anywhere on COCH₃ Curved arrow from C-H bond back into benzene ring (1) IGNORE if towards the "+" 			(4 marks)
(c)	(i)	HCN (1) + KCN (1) OR KCN (1) + Acid (1) EXCEPT conc H ₂ SO ₄ OR HCN (1) + Base / alkali(1) OR HCN/KCN (1) pH 5 - 9 (1) Names or formulae can be given	CN ⁻ for KCN If KCN, HCN and acid max1		(2 marks)
	(ii)	nucleophilic addition Both needed			(1 mark)

EXPECTED ANSWER	ACCEPT	REJECT	MARK
		· · · · · · · · · · · · · · · · · · ·	

	EXPECTED ANSWER	ACCEPT	REJECT	MARK
·				
	 The intermediate is not consequential on their first step The minus of the cyanide ion can be on either the C or the N The arrow can start from the minus of ⁻CN in step 1 (but not from the minus of CN⁻) and can start from the minus of O⁻ in step 2 The arrow from the bond must not go past the O atom Lone pairs not essential Single step addition of HCN scores zero. 			
	 Autoionisation of C=O can only score the last two marks ie max 2 			(3 marks)
(d) (i)	2 enantiomers drawn $\begin{array}{c c} C_6H_5 & C_6H_5 \\ \downarrow C \\ NC^{+}C \\ \hline CH_3 & H_2C \\ \hline C $	C or C		
	Ο̈́Η OH			(1 mark)
(ii)	(No effect) as ketone planar (1)			
	Attack possible from top or bottom (1)			
	Producing racemic/50:50 mixture (of enantiomers) / rotations cancel out (1) no effect could appear here in the answer			(3 marks)
(e) No a	absorption corresponding to C=O / carbonyl	Peak / band	Ketone group	
No a	absorption around 1700 cm ⁻¹			(1 mark)
		1	L	Total 19 marks

EXPECTED ANSWER	ACCEPT	REJECT	MARK

4	(a)	(i)	(free) radical substitution	phonetic spelling e.g. radicle	"radical nucleophilic substitution"	(1 mark)
		(ii)	UV radiation OR sunlight OR ultraviolet radiation OR UV OR UV OR UV light OR white light OR heat		"light" on its own NOT hv NOT strong light	(1 mark)
	(b)	Diag labe At le <u>Expl</u> Vapo Conc Pure If he score	ram Iled axes, lozenge and b.pt. values (1) east 2 horizontal + 2 vertical tie lines from anywhere except 100% (1) anation our richer in more volatile/chloropropane (1) dense and then reboil (1) e chloropropane distilled off / bromopropane left as residue (1) eat to 46 (or when at 46) all chloropropane boils off then es (0) for explanation		The curve must not noticeably go above or below the boiling points indicating a max or min on the curve	(5 marks)

EXPECTED ANSWER	ACCEPT	REJECT	MARK

(C)	heat with NaOH (1)		Methods based on	
			displacement	
	add excess HNO ₃			
	OR acidify with HNO ₃ (1)			
	add AgNO ₃ (1) chloro gives white <u>and</u> bromo gives cream ppt (1)			
	white/off white/ pale yellow ppt soluble in dil NH_3 , cream ppt slightly/partially soluble in dil NH_3 , (or soluble in conc NH_3) (1)			
	If fail to add NaOH or fail to add HNO_3 3 max			(5 marks)
(d)	MS shows different <i>m/e</i> values for molecular ion (1)			
	Because molar masses different / or reason why different(1)			
	Nmr give same number/3 peaks with both (1)	Hydrogens in same environment in both		
	OR	molecules		
	Nmr shows different chemical shifts (1)			
	Due to different halides (1)			
	In MS molecular ion peak often absent (1)			
	Must be a statement about both MS and NMR to score 3 marks			(3 marks)
				otal 15 marks

		EXPECTED ANSWER	ACCEPT	REJECT	MARK
5	(a)	Moles manganate = 0.0239 x 0.2 (1) = 0.00478		Answers that	
		Moles bromide = 2.46 (1) = 0.0239		equation and	
		103		then use it to derive ratio	
		$a = t = M_{\rm H} O = D_{\rm H} = 1.5$			

	ratio OR r	$D MnO_4^- : Br^- = 1:5$ ratio $Br^- : MnO_4^- = 5:1$ (1)		derive ratio	
	MnO spec bala <i>If no</i> <i>If ca</i> <i>calce</i>	$_{4}^{-} + 5Br^{-} + 8H^{+} \rightarrow Mn^{2+} + 4H_{2}O + 2.5Br_{2}$ ties (1) nce (1) to calculation allow correct equation marks for allow wrong equation must be consequential on the ratio for ulated for balance mark	Multiples		(5 marks)
(b)	(i)	Not oxidised by manganate(VII)/ does not react with oxidising agents OR Not hydrolysed by acid	Cannot be oxidised	unreactive	(1 mark)
	(ii)	non-biodegradable therefore fills landfill sites	Non-biodegradable therefore persists in environment	toxic gas if burned	(1 mark)
					Total 7 marks