

Mark Scheme (Results) January 2008

GCE

GCE Chemistry (6245) Paper 1

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the mark scheme

- 1 / means that the responses are alternatives and either answer should receive full credit.
- 2 () means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
- 3 [] words inside square brackets are instructions or guidance for examiners.
- 4 Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
- 5 ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(a)(i)	Cr [Ar] $3d^{5}4s^{1}$ and Cr^{3+} [Ar] $3d^{3}$			1
	OR^{1} 4s ¹ 3d ⁵ and 3d ³			
	OR $3D^{5}4S^{1}$ and $3D^{3}$			
	OR $4S^{1}3D^{5}$ and $3D^{3}$			
	OR $3d_54s_1$ and $3d_3$			
	OR $4s_13d_5$ and $3d_3$			
	OR $3D_54S_1$ and $3D_3$			
	OR $4S_13D_5$ and $3D_3$			
	ALLOW 1s ² 2s ² etc for [Ar] provided it			
	is complete and correct			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(a)(ii)	octahedral (1)	diagram for name		3
	6 electron pairs around Cr (ion) (1)	6 bonds, could be drawn on diagram		
	these repel to a position of minimum repulsion / maximum separation (1)		bonds/atoms repelling	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(a)(iii)	(gelatinous) green ppt (1)	green solid any shade of green		2
	(dissolves) to green solution (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(a)(iv)	$\begin{array}{l} [Cr(H_2O)_6]^{3^+} + 3OH^- \rightarrow \\ Cr(OH)_3(H_2O)_3 + 3H_2O \\ OR \\ [Cr(H_2O)_6]^{3^+} + 3OH^- \rightarrow Cr(OH)_3 + \\ 6H_2O \ \textbf{(1)} \\ \\ Cr(OH)_3(H_2O)_3 + 3OH^- \rightarrow \\ [Cr(OH)_6]^{3^-} + 3H_2O \\ OR \\ Cr(OH)_3 + 3OH^- \rightarrow [Cr(OH)_6]^{3^-} \ \textbf{(1)} \\ Ignore state symbols \end{array}$	equations with NaOH eg 3NaOH on LHS 3Na ⁺ on RHS If 3H ₂ O is missing from RHS of both equations, allow (1) for both correct Cr species on RHS	Cr³⁺(aq)	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(b)(i)	Reactant (1)Product (1)Formula of a:Formula of a:primary alcohol \rightarrow aldehydeprimary alcohol \rightarrow carboxylic acidsecondary alcohol \rightarrow ketonealdehyde \rightarrow carboxylic acid		molecular formulae names with no formulae COH for aldehyde, unless structure shown as well	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(b)(ii)	E_{cell}^{θ} for MnO ₄ ⁻ reacting with Cl ⁻ = (+) 0.15 (V) (1) E_{cell}^{θ} for Cr ₂ O ₇ ²⁻ reacting with Cl ⁻ = - 0.03 (V) OR			4
	E°_{cell} for Cr ³⁺ reacting with Cl ₂ = (+)0.03(V)(1) MnO ₄ ⁻ will oxidise Cl ⁻ /HCl so HCl cannot be used OR			
	$2MnO_4^- + 16H^+ + 10Cl^- \rightarrow 2Mn^{2+} + 8H_2O + 5Cl_2$ so HCl cannot be used (1) $Cr_2O_7^{2-}$ will not oxidise Cl ⁻ /HCl so HCl can be used (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(b)(iii)	oxidation number of Cr remains at +6 ALLOW this mark if the oxidation numbers are written under the species in the equation		gain or loss of electrons oxidation number does not change if it is not specified or is incorrect	1

2. ACCEPT NAMES OR FORMULAE FOR REAGENTS IF BOTH ARE GIVEN, BOTH MUST BE CORRECT. CONDITION MARKS ARE ONLY AVAILABLE FOR CORRECT REAGENTS

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(a)(i)	concentrated nitric acid (1) concentrated sulphuric acid (1) [penalise lack of "concentrated" once]	concentrated + formulae "c" for concentrated		3
	temperature 40-60°C (1) stand alone	any temperature or range of temperatures within this range	more than 40°C less than 60°C	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(a)(ii)	$HNO_3 + H_2SO_4 \rightarrow H_2O + HSO_4^-$ +NO ₂ ⁺ (1)	arrow to or from		4
	Can be shown in two stages	charges		
	OR	Kekule structures		
	$HNO_3 + 2H_2SO_4 \longrightarrow H_3O^+ + 2HSO_4^- + NO_2^+ (1)$			
	$()$ $NO_2^+ \rightarrow (+ H)$			
	$(+, +) H (+HSO_4^{-}) \longrightarrow (+) H^*(+H_2SO_4)$	if HSO₄ [−] is used in the last step, arrow must come from O		
	Curly arrow from ring towards (space between C in ring and) N in $NO_2^+(1)$ Correct intermediate (1) Curved arrow from C – H bond back into ring (1)	curly arrow from within ring		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(b)	tin and conc hydrochloric acid (1) IGNORE heat or any stated temperature reduction OR loss of oxygen and gain of hydrogen (1)	Fe or Zn and conc HCl H ₂ + Pt/Ni/Pd	LiAIH₄ redox	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(c)	sodium nitrite/ NaNO ₂ and hydrochloric acid/HCl (aq) (1) 0-10°C (1)	sodium nitrate(III) dilute or concentrated acid any temperature or range of temperatures	just "HCI" temperature value qualified by "below"/	3
	benzene diazonium chloride (1)	within this range	"above"	

g n ii la s	collect gas in gas syringe/over water in graduated apparatus or diagram (1) measure volume of gas at regular time intervals (1) label volume and time on axes (1) sketch including horizontal finish/final volume (1)	If [BDC] measured only the following marks are available: Label [BDC] and time on axes (1) Sketch (1) find at least 2 half lives, first order if half lives	6
	vol Hime	are constant (1)	
F (A n (L s f f l i c o g o f f i n k s r M	1 st half life is time taken to half final volume, 2 nd half life is time from half to 3⁄4 these could be shown on graph (1) Half lives constant (therefore 1 st order) (1) STAND ALONE ALTERNATIVE FOR LAST 4 MARKS measure final volume and calculate ($V_{final}-V_t$) (1) Label ($V_{final}-V_t$) and time on axes (1) sketch (1) $V_{t} = \int_{V_{t}}^{V_{t}}$ find at least 2 half lives, first order if half lives are constant (1) OR collect gas in gas syringe/over water in graduated apparatus or diagram (1) find volume of gas after fixed time and calculate rate = vol/time (1) repeat for different values of [X] (1) label rate and [X] on axes (1) sketch straight line (1) rate proportional to [X], so first order (1) Mass loss method could be applied to any of above	For pH method only the following marks are available: use a pH probe (1) measure pH at regular time intervals (1) half lives constant (1) If candidate mixes answers, mark them as if separate and award the highest mark	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(a)	Boiling temperative Joc Vapour Liquid Mole fraction d 2-methyl propanal-ol vapour and liquid lines reasonably drawn with no maximum or minimum (1) Sloping up to the right (1) areas labelled (1)	If diagram slopes up to left, could still score other two marks If 109°C labelled at lower temp than 82°C, can only score liquid and vapour mark	Straight liquid or vapour line	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(b)	draws more than 1 tie line, starting at 0.75, connected by verticals (and heading correctly towards the lower bp component) (1)			4
	states that (equilibrium) vapour is richer in the more volatile component / propan-1-ol (1) STAND ALONE			
	describes repeated distillations (with correct reference to tie lines) (1)			
	give rise to (first) distillate of pure propan-1-ol / 2-methylpropan-1-ol left in the flask (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(a)	Ester(s) (1)	triester(s) triglyceride(s)	Ether(s) lipid(s)	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(b)(i)	Any example e.g. (1)			2
	H R R [R can be any group/atom other than hydrogen, R can be the same or different]			
	both hydrogen atoms on the same side OR			
	both larger groups on the same side (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(b)(ii)	saturates pack more closely together than unsaturates (due to cis isomers) (1)		breaking single / double / σ / π bonds	2
	saturates have higher/stronger dispersion/Van der Waals' forces than unsaturates (so more energy is required to melt) (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(c)(i)	3 RCOONa / RCOO ⁻ Na ⁺ (1) CH ₂ OHCH(OH)CH ₂ OH (1)	RCO ₂ Na Full structural formulae	Covalent bond shown between O and Na.	2
			RCOOH	
			$C_3H_8O_2$	

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
4.(c)(ii)	Making/manufacture of: soap/soapy detergents or		saponification	1
	soap production (1)			

Question Number	Correct Answer		Acceptable Answers	Reject	Mark	
4.(d)(i)			Answer involving		3	
	Reagent	2- methylpropan- 2-ol	propanoic acid	formation of an ester, identified by smell, for		
	(1)	obs (1)	obs(1)	either acid or alcohol		
	NaHCO ₃	no change	effervescence			
	Na ₂ CO ₃	no change	effervescence	Description of test for CO_2 instead of		
	Observation marks conditional on correct reagent		effervescence			
	IGNORE references to heat					

Question Number	Correct Answer		Acceptable Answers	Reject	Mark	
4.(d)(ii)	correct reag	Propanal obs (1) blue to red ppt silver mirror/ppt orange to green/blue/ brown no change		Benedicts Ammoniacal AgNO₃ MnO₄ ⁻ /H ⁺ with correct colour changes		3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(e)(i)	$\begin{array}{cccc} H_{3}C & & O^{\ominus} \\ H_{3}C & C = O \\ H_{3}C & (:)CN & & H_{3}C - C - CN \\ H_{3}C & (:)CN & & CH_{3} \\ \end{array}$ Each arrow (1) (1) $\begin{array}{c} O^{\ominus} & H - CN \\ H_{3}C - C - CN \\ H_{3}C - C - CN \\ CH_{3} & C - C - CN \\ CH_{3} & C - C - CN \\ \end{array} + CN^{-1} \\ \end{array}$ (1) both arrows	CN ⁻ or ⁻ CN arrows start from negative charge on O or C arrow to H ⁺ or to HCN in 2 nd step		4

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(e)(ii)	higher [H [⁺]] (1)			2
	(so) lower [CN ⁻] and rate slower (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5.(a)(i)	electrode – platinum/Pt (1) Fe ²⁺ and Fe ³⁺ (1) 1 mol dm ⁻³ (1) conditional on both ions being present			3

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
5.(a)(ii)	to bring the solutions to the same	to allow the movement	to allow flow of	1
	potential/connect solutions without	of ions OR	electrons	
	setting up a p.d. (1)	to complete the circuit		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5.(a)(iii)	(saturated) potassium chloride OR	Formulae		1
	(saturated) potassium nitrate (1)	Sodium nitrate or chloride		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5.(a)(iv)	x - 0.34 = 0.43 (1) x = +0.77 V (1)			2
	Correct answer with some working (2)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5.(a)(v)	$Fe^{3+} + e^{-} \rightarrow Fe^{2+}$ OR	e for electron		2
	$Fe^{3+} + e^- \Rightarrow Fe^{2+}$ (1)			
	$Cu \rightarrow Cu^{2+} + 2e^{-}$ OR			
	$Cu \rightleftharpoons Cu^{2+} + 2e^{-}$ OR			
	$Cu - 2e^{-} \rightarrow Cu^{2+}$ OR			
	Cu – 2e⁻			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5.(a)(vi)	Cu + 2Fe ³⁺ → 2Fe ²⁺ + Cu ²⁺ (1)	$2Fe^{2+} + Cu^{2+} \rightarrow Cu +$ $2Fe^{3+}$ if both half equations in opposite direction in (v)		1

Correct Answer	Acceptable Answers	Reject	Mark
$\frac{1}{2} O_2 + 2e^- + H_2 O $ ⇒ 2OH ⁻ species (1) balance (1) ignore state symbols	multiples		2
Correct Answer	Acceptable Answers	Reject	Mark
Moles $S_2O_3^{2-} = (\underline{16.5}) \times 0.1 = 1.65 \times 10^{-3}$ (1) 1000			3
(Moles $I_2 = \frac{1.65 \times 10^{-3}}{2} = 8.25 \times 10^{-4}$)			
0.066(mol dm ⁻³) 25 (1)			
	$\frac{1}{2} O_2 + 2e^- + H_2 O = A - 2OH^-$ species (1) balance (1) ignore state symbols Correct Answer Moles S ₂ O ₃ ²⁻ = (<u>16.5</u>)x0.1 = 1.65x10 ⁻³ (1) (Moles I ₂ = <u>1.65x10⁻³</u> = 8.25x10 ⁻⁴) 2 Moles Cu ²⁺ = 1.65x10 ⁻³ (1) Conc CuSO ₄ = 1.65x10 ⁻³ x(<u>1000</u>) = 0.066(mol dm ⁻³) 25	$1/2 O_2 + 2e^- + H_2 O = / \rightarrow 2OH^-$ multiples species (1) multiples balance (1) Moles symbols Correct Answer Acceptable Answers Moles $S_2O_3^{2^-} = (\underline{16.5}) \times 0.1 = 1.65 \times 10^{-3}$ (Moles $I_2 = \underline{1.65 \times 10^{-3}} = 8.25 \times 10^{-4})$ Moles $Cu^{2^+} = 1.65 \times 10^{-3}$ (1) Conc $CuSO_4 = 1.65 \times 10^{-3} \times (\underline{1000}) = 0.066 (mol dm^{-3})$ (1)	$1/2 O_2 + 2e^- + H_2O \Rightarrow / \rightarrow 2OH^-$ multiples species (1) multiples balance (1) multiples ignore state symbols Acceptable Answers Reject Moles $S_2O_3^{2^-} = (\underline{16.5}) \times 0.1 = 1.65 \times 10^{-3}$ Acceptable Answers Reject Moles $S_2O_3^{2^-} = (\underline{16.5}) \times 0.1 = 1.65 \times 10^{-3}$ Moles $S_2O_3^{2^-} = (\underline{16.5}) \times 0.1 = 1.65 \times 10^{-3}$ Moles $S_2O_3^{2^-} = (\underline{16.5}) \times 0.1 = 1.65 \times 10^{-3}$ Moles $S_2O_3^{2^-} = (\underline{16.5}) \times 0.1 = 1.65 \times 10^{-3}$ Reject Moles $S_2O_3^{2^-} = (\underline{16.5}) \times 0.1 = 1.65 \times 10^{-3}$ (Moles $I_2 = \underline{1.65 \times 10^{-3}} = 8.25 \times 10^{-4})$ Reject Moles $Cu^{2^+} = 1.65 \times 10^{-3}$ Moles $Cu^{2^+} = 1.65 \times 10^{-3} \times (\underline{1000}) = 0.066 (mol dm^{-3})$ Moles 25 M