edexcel 뼟

GCE
Edexcel GCE
Chemistry (6246/02)

January 2006

Mark Scheme (Results)

1.	(a)			(3 marks)
	(b)	(i)	blue/black to colourless	(1 mark)
		(ii)	$\begin{aligned} & \text { no. moles } \mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-} \text { used }=12.5 \times 0.1 / 1000=1.25 \times 10^{-3}(\mathbf{1}) \\ & \text { no. moles } \mathrm{I}_{2}=1.25 \times 10^{-3} / 2=6.25 \times 10^{-4}(\mathbf{1}) \\ & \text { no. moles } \mathrm{ClO}^{-}=\text {no. moles } \mathrm{I}_{2}(\mathbf{1}) \\ & \text { no. moles } \mathrm{ClO}^{-} \text {in original } 10 \mathrm{~cm}^{3}=10 \times 6.25 \times 10^{-4} \\ & =6.25 \times 10^{-3}(\mathbf{1}) \\ & \text { no. moles } \mathrm{ClO}^{-} \text {in } 1 \mathrm{dm}^{3}=100 \times 6.25 \times 10^{-3}(\mathbf{1})=0.625 \end{aligned}$	(5 marks
		(iii)	$\begin{aligned} & \text { mass } \mathrm{Cl}_{2}=0.625 \times 71 \\ & =44.4(\mathrm{~g}) \end{aligned}$ mark consequentially on (ii) must be 3s.f. in final answer	(1 mark)
	(c)		the stronger oxidising agent because Cl_{2} oxidises S from to (+)6 (1) I_{2} oxidises S from (+)2 to (+)2.50(1)	(2 marks)
QWC	(d)		xidises KI / iodide to I_{2}. or balanced equation (1) acts with starch/paper to give blue/black (1)	(2 marks)
		Total for Question: 14 marks		

2	(a)	(lattice of) cations/positive ions $/ \mathrm{Mg}^{2+}$ (1) attracted to delocalised / sea / cloud of electrons (1) which are mobile/can move (1)		(3 marks)
QWC	(b)	Mg^{2+} smaller (radius) than $\mathrm{Ba}^{2+} /$ magnesium ion is smaller and has the same charge (as a barium ion) (1) do not allow charge density unless explained Greater polarisation/distortion of carbonate ion/anion (1)		(2 marks)
	(c)	Either Step 1 : Magnesium in dry ether/ethoxyethane (1) add (solid) CO_{2} / dry ice (1) Then add water / dilute acid / or formula or H^{+}(1) add methanal / HCHO (1) Then $\mathrm{H}^{+} / \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ or acidified (potassium) dichromate (1) OR Add KCN/potassium (or sodium) cyanide (1) In aqueous ethanol (1) Then heat / reflux with acid/ H^{+}(1)		(3 marks)
	(d)	(i)	$\begin{align*} & {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=7.94 \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)(\mathbf{1})} \\ & {[\mathrm{HA}]=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2}}{K a} \text { OR } \frac{\left(7.94 \times 10^{-4}\right)^{2}}{1.35 \times 10^{-5}}(\mathbf{1})} \tag{1}\\ & {[\mathrm{HA}]=0.0467\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)(\mathbf{1}) \text { IGNORE S.F. }} \end{align*}$	(3 marks)
		(ii)	$\begin{align*} & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O}=\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \\ & / \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}=\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}+\mathrm{H}^{+} \tag{1} \end{align*}$ [$\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}\right]$small / acid is only dissociated to a small extent / slightly (1) NOT "acid not fully/partially dissociated" Adding H^{+}causes large change in [A], but small change in [HA] (1)	(3 marks)

	(iii)	[weak acid] $=0.0429 /$ or moles weak acid $=0.0015 /$ or vol of weak acid $=15 \mathrm{~cm}^{3}$ (1) [salt] $=0.0286 /$ or moles salt $=0.001 /$ or vol of salt $=10 \mathrm{~cm}^{3}(\mathbf{1})$ $\left[\mathrm{H}^{+}\right]=\mathrm{K}_{\mathrm{a}} \times(\mathrm{acid} / \text { salt })=2.025 \times 10^{-5}(\mathbf{1})$ $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=4.69$ (1) (allow 1 dp or more) (consequential throughout) (note: allow any correct alternative processing methods for last 2 marks) (note: common errors: $\mathrm{pH}=4.5$ / 4.47 etc, with working, scores $\mathbf{3}$ marks.. 1 error made. $\mathrm{pH}=4.9$ / 4.87 etc, with working, scores 2 marks.. 2 errors made)	(4 marks)
			18 marks

3	(a)	(i)	$\mathrm{CH}_{3} \mathrm{COCH}_{3} \quad$(use expts $1+2$) as conc doubles, rate doubles first order (1) $\mathrm{I}_{2} \quad$(use expts $1+3)$ as conc changes/halves, rate is constant zero order (1) if no explanations max 1 for both orders $\mathrm{H}^{+} \quad$ explanation (1) first order (1) e.g. expts $1+4$ or $3+4$ as $\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]$ doubles and $\left[\mathrm{H}^{+}\right]$doubles, rate x 4 but $1^{\text {st }}$ order w.r.t. $\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]$ so must be $1^{\text {st }}$ order w.r.t. $\left[\mathrm{H}^{+}\right]$ OR Expts $2+4$ as $\left[\mathrm{I}_{2}\right]$ doubles and $\left[\mathrm{H}^{+}\right]$doubles, rate doubles but zero order w.r.t. $\left[\mathrm{I}_{2}\right]$ so must be $1^{\text {st }}$ order w.r.t. $\left[\mathrm{H}^{+}\right]$	(4 marks)
		(ii)	2 consequential on (a)	(1 mark)
	(b)		$=\mathrm{k}\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]\left[\mathrm{H}^{+}\right] \text {consequential on }(\mathrm{a})(\mathbf{1})$ $\text { e.g } \left.1.5 \times 10^{-5} / 0.4 \times 0.4\right)=9.4 \times 10^{-5}(1)$ quential on their rate equation units $\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}(1)$	(3 marks)
QWC	(c)		1 - slow / rate determining step / step 2 - faster (1) e has zero order (or is not in rate eqn) so.. does not take part in w step / r.d.s. or is in a fast step or is in mechanism after r.d.s. (1)	(2 marks)
	(d)		$\begin{aligned} & 2 \text { starts at } 0.004 \text { and Expt } 3 \text { at } 0.002 \text { (1) } \\ & 2: \text { line steeper (1) } \\ & 3: \text { line parallel (1) } \end{aligned}$	(3 marks)
	(e)	(i)	(aqueous) sodium (or potassium) hydroxide / carbonate or formulae	(1 mark)
		(ii)	water or any dilute acid or formula (1) (1) ALLOW OH	(2 marks)
	(f)		k propanone, 3 peaks propanal (1) ogen in one environment, hydrogen in three environments (1) se could be shown on structural formulae] W e.g. 1 peak propanone because H in one environment, for 1 mark	(2 marks)
(Total 18 marks)				

4	(a)	```C=C add (aqueous) bromine (1) red-brown / brown / orange / yellow.. to colourless (1) OR add alkaline KMnO_ (1) brown ppt. (1) OH add PCl5 (1) steamy/misty/white fumes (1) OR other suitable test: reagent (1) observation (1) e.g. Conc H2SO (fruity) smell (when poured into water) (1) OR sodium (1) Gas which ignites with squeaky pop (1)```	(4 marks)
	(b)	(i) $\mathrm{OR}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{C}_{2} \mathrm{H}_{5}$	(1 mark)
	(b)	(ii)mass linalool in lavender oil $=0.65 \times 2=1.3 \mathrm{~g} \mathrm{(1)}$ no. moles linalool $=1.3 / 140=9.29 \times 10^{-3}(1)$ vol hydrogen $=9.29 \times 10^{-3} \times 2 \times 24000=450 / 446 \mathrm{~cm}^{3} /$ $0.446 \mathrm{dm}^{3}(1)$ consequential on (i) $\mathrm{SF}:$ answer ≥ 2	(3 marks)
	(c)	(i) $\mathrm{OR}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}(\mathrm{OH}) \mathrm{CHOH}\left(\mathrm{CH}_{2}\right)_{2}(\mathrm{CHOH})_{2} \mathrm{CH}_{2} \mathrm{OH}$ If OH only added to one $\mathrm{C}=\mathrm{C}$ (1)	(2 marks)
QWC		(ii) \quadProduct forms more H bonds with water (1) more / five not one OH groups (1)	(2 marks)
	(d)	for both arrows (1) for a carbocation (1) for arrow (1) for correct product (1) arrow can come from the - on Br , but do not need to show lone pair on Br	(4 marks)

(e)	optical isomerism (1) correct 3D diagrams (1) eg. Must be drawn as mirror images	(2 marks)
	Total 18 marks	
	TOTAL FOR PAPER: 50 MARKS	

