## Edexcel GCE <br> Chemistry <br> 6246/02

June 2006
advancing learning, changing lives
Results Mark Scheme

## Edexcel GCE Chemistry $6246 / 02$

## Section A

1
(a) (i) pink to colourless NOT clear OR pink is decolourised
ALLOW pale red instead of pink
NOT "pink goes" on its own
NOT purple
NOT Red NOT any of these in combination with pink
NOT Magenta NOT Cerise
(ii) 8 - less than 11 - Any number or range within this range
(b) IGNORE SF in (b)
(i) initial no. moles $\mathrm{NaOH}=1.00 \times \frac{25.0}{1000}=0.0250$
no. moles HCl used $=0.100 \times \frac{8.80}{1000}=8.80 \times 10^{-4}$
no. moles NaOH left in $25 \mathrm{~cm}^{3}=8.80 \times 10^{-4}$
OR indication of $1: 1$ ratio (1)
no. moles NaOH left in $250 \mathrm{~cm}^{3}=8.80 \times 10^{-3}$ (1)
no. moles NaOH used $=0.0250-8.80 \times 10^{-3}=0.0162(1)$
0.0162 with some working involving titre (5)

Units not required BUT incorrect units e.g. mol dm ${ }^{-3}$ loses the $5^{\text {th }}$ mark
(ii) no. moles hydrolysed $=\frac{(\mathrm{b})(\mathrm{i})}{2}(\mathbf{1})=8.1 \times 10^{-3}$

EITHER
mass of aspirin $8.1 \times 10^{-3} \times 180=1.458 \mathrm{~g}$ (1)
$\%$ aspirin $=\frac{1.458}{1.50} \times 100=97.2 \%(1)$
OR
Theoretical moles aspirin $=\frac{1.5}{180}=8.33 \times 10^{-3}(1)$
$\%$ aspirin $=\frac{8.1 \times 10^{-3}}{8.33 \times 10^{-3}} \times 100=97.2 \% \quad(1)$

## ALTERNATIVE METHOD

Theoretical moles aspirin $=1.5=8.33 \times 10^{-3}(1)$
Theoretical moles $\mathrm{NaOH}=2 \times 8.33 \times 10^{-3}(1)=0.01667$
$\%$ aspirin $=(b)(i) \quad \times 100=97.2 \% \quad(1)$
0.01667

Mark consequentially but do not allow >100 \%
(c)

(1) $O R$


NOT" a carboxy/ group"


(1) $A L L O W$


ALLOW




Only penalise $C=O$ not shown once

## Section B

2 (a) Molecular formula of $\mathbf{D}$
$\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{2}$ (2) with some correct working / deduction
e.g.

C $\frac{58.8}{100} \times \frac{102}{12}=5$
H $9.8 \times \underline{102}=10$
1001
$0 \frac{31.4}{100} \times \frac{102}{16}=2$
OR
Use \% to find empirical formula (1)
then use or refer to molar mass to deduce molecular formula (1)

## E

Is propan-2-ol (1) ACCEPT name or formula
IF name and formula given, both must be correct
Must contain $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH})$ /be a secondary 2-ol/methyl secondary alcohol, as it gives iodoform ppt. (1) Do not allow if methyl ketone included

## G

Is lodoform $/ \mathrm{CHI}_{3}$ (1) - stand alone mark
IF name and formula given, both must be correct

## F

Is the sodium salt of the acid/sodium ethanoate (produced by hydrolysis of the ester) (1)
(so is sodium ethanoate) with justification for number of carbon atoms e.g. must contain 5-3=2 carbon atoms (1)
ACCEPT name or formula
ALLOW 1 max (out of 2 ) if "ethanoic acid + reasoning for number of $C$ atoms"

D is

$D$ is consequential on their unambiguous $E+F$ NOT just "propylethanoate" unless correct formula given

## Equation

$\mathrm{CH}_{3} \mathrm{COOCH}\left(\mathrm{CH}_{3}\right)_{2}+\mathrm{NaOH} \rightarrow \mathrm{CH}_{3} \mathrm{COONa}+\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}$ (1)
NOT molecular formula for D
Consequential on their D
ALLOW $\mathrm{CH}_{3} \mathrm{COOC}_{3} \mathrm{H}_{7}$ for D and $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$ for E
(9 marks)
Candidates can identify $\mathrm{D}, \mathrm{E}$ and F in the equation
(b) ALLOW correct names or formulae for reagents. If both given, both must be correct
Condition mark only scores if correct or nearly correct reagents

## Step 1

$\mathrm{CH}_{3} \mathrm{Cl} / \mathrm{CH}_{3} \mathrm{COCl} /$ any halogenoalkane/ any acylchloride (1)

+ (anhydrous) $\mathrm{AlCl}_{3} / \mathrm{Al}_{2} \mathrm{Cl}_{6} / \mathrm{FeCl}_{3} / \mathrm{Fe}_{2} \mathrm{Cl}_{6}$ (1)
ALLOW other halides except $\mathrm{Fel}_{3}$
If "RCI" plus correct condition ALLOW condition mark
Intermediate methylbenzene $/ \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$ or other derived from their Freidel Crafts reagent (1)

If step 1 uses " HCOCl " 4 max with -1 for each error.

## Step 2

$\mathrm{KMnO}_{4}$ /potassium manganate(VII)/ $\mathrm{MnO}_{4}^{-}$(1)
ALLOW "potassium manganate, $\mathrm{KMnO}_{4}$ "
$\mathrm{NaOH} /$ alkaline $/ \mathrm{OH}^{-}(\mathrm{aq})$ and heat/reflux (1)
NOT warm
ACCEPT specified temperature provided it is $\geq 100^{\circ} \mathrm{C}$

## Step 3

Acid/acidify / $\mathrm{H}^{+}(\mathrm{aq}) /$ named mineral acid (1)

## ALTERNATIVE

## Step 1

$\mathrm{Br}_{2} \mathrm{OR}$ any halogen (1)
$\mathrm{FeBr}_{3}$ etc (1)
Intermediate bromobenzene (1)

## Step 2

Mg and dry ether (1)

## Step 3

(Solid) $\mathrm{CO}_{2}$ (1)

## Step 4

Acid/water (1)
ALLOW any correct synthesis with -1 for each error or omission made. If synthesis does not work, mark as follows:
Start at beginning and mark until incorrect. Then start at end and mark until incorrect. Then award whichever "route" through gives the highest mark.
(c) $\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{HSO}_{4}^{-}+\mathrm{NO}_{2}^{+}-$Can be shown in two stages

OR
$\mathrm{HNO}_{3}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+2 \mathrm{HSO}_{4}^{-}+\mathrm{NO}_{2}^{+}(1)$



OR

$1^{\text {st }}$ curved arrow from benzene ring of electrons towards N of $\mathrm{NO}_{2}{ }^{+}$ion (1) ALLOW the " + " anywhere on $\mathrm{NO}_{2}$

Intermediate correctly drawn, including positive charge (1)
Curved arrow from C-H bond back into benzene ring (1)
IGNORE if towards the " + "
ALLOW HSO ${ }_{4}^{-}$but arrow must start on 0
ALLOW arrow from negative charge

## ALTERNATIVE



$1^{\text {st }}$ curved arrow from double bond towards N of $\mathrm{NO}_{2}{ }^{+}$ion (1) ALLOW the " + " anywhere on $\mathrm{NO}_{2}$

Intermediate correctly drawn, including positive charge (1)
Curved arrow from C-H bond back into benzene ring (1)
IGNORE if towards the " + "

Q 975-1225 K OR 700-950 ${ }^{\circ} \mathrm{C}$ (1)
W ALLOW any number or range within these values
C*
(Forward) reaction is exothermic so the highest yield should be at low temperature (1) OR reverse argument

Rate is too slow at low temperature, so compromise (1) NOT just "a compromise", it must be related to rate

## Catalyst

Platinum (and rhodium) to give a fast rate at lower T
OR
Pt etc.... speeds up conversion to NO and not combustion to $\mathrm{N}_{2}$ (1)
ALLOW Pt etc increases rate / lowers $\mathrm{E}_{\mathrm{a}}$

## Pressure

2-10 atmospheres / 200-1000 kPa (1) - stand alone
ALLOW any number or range within these values
(Small) increase/very little difference in number of (gas) molecules/moles on r.h.s. so low pressure (1) - stand alone

OR
2-10 atmospheres / 200-1000 kPa (1)
ALLOW any number or range within these values
To push gases through (1) - provided quoted or implied pressure
(b) (i) $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}{ }^{2-}+5 \mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+} \rightarrow 4 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}$

1:5 ratio and no electrons in equation (1)
Rest correct i.e. $\mathrm{H}^{+}$and $\mathrm{H}_{2} \mathrm{O}$ cancel (1)
(ii) Rapid/fast effervescence ( $\therefore$ rate has increased) (1)

Colour change to green and back to pink/original colour ( $\therefore$ alternative route/ not used up) (1)
Do NOT allow if stated "it does not take part in reaction" NOT just "back to pink"
NOT just "pink colour returns"
They can change oxidation state easily/have variable oxidation states/can be illustrated (1)
(iii) axes both labelled correctly (1)

Q e.g. percentage/fraction/number of molecules (with energy E)
W for $y$-axis
C* e.g. energy/kinetic energy for x -axis NOT speed
shape of graph (1)
starts at the origin (and rises steeply)
peak skewed to left
asymptote (if line crosses the x axis do not award this mark)
All 3 needed
Do not award the mark if two or more curves are drawn for different temperatures.


Both activation energies shown well to the right of the peak (1)
Comment on relationship of area under curve to number of particles with $\mathrm{E} \geq \mathrm{E}_{\mathrm{a}}$
e.g. more of molecules/collisions have energy greater than or equal to the activation energy/have enough energy to result in a reaction

Therefore a higher frequency of collisions result in reaction
OR more (of the) collisions result in reaction
OR more successful collisions per unit time
OR more of the collisions are successful
OR greater proportion of the collisions are successful (1)- stand alone
NOT just " more successful collisions"
(c)

$$
\begin{align*}
& \text { no. moles } \mathrm{O}_{2}=\frac{100}{24000} \\
& =4.17 \times 10^{-3} \\
& \text { no. moles } \mathrm{H}_{2} \mathrm{O}_{2}=2 \times 4.17 \times 10^{-3} \\
& =8.33 \times 10^{-3} \tag{1}
\end{align*}
$$

Mark consequentially on moles of $\mathrm{O}_{2}$
volume $\mathrm{H}_{2} \mathrm{O}_{2}=8.33 \times 10^{-3} \times \frac{1000}{0.5}$
$16.7 \mathrm{~cm}^{3}$ (1)

OR
$24000 \mathrm{~cm}^{3} \mathrm{O}_{2}$ from $2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}_{2}$ (1)
therefore $100 \mathrm{~cm}^{3}$ from $2 \times 100$
$=8.33 \times 10^{-3} \mathrm{~mol}(1)$
$\frac{8.33 \times 10^{-3}}{0.5}$
$=0.0167 \mathrm{dm}^{3}$

Answer and unit required for third mark
IGNORE s.f.
Mark consequentially on moles of $\mathrm{H}_{2} \mathrm{O}_{2}$
(a) (i) $\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}(1)$
$\Delta H=(3 x-394)-(3 x-110)-(-822)$
$=-30\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
Multiply by 3 twice (1)
Correct answer with sign (1)
ALLOW consequential calculation if wrong stoichiometry If $\mathrm{O}_{2}$ given as product $\mathbf{1}$ max on consequential calculation
(ii) (i) is more likely because the rate of a reaction between a solid and a gas will be faster than that between two solids

ALLOW
(i) is more likely because it is exothermic (and (ii) is endothermic) OR
products in (i) are more thermodynamically stable relative to reactants than in (ii)

Consequential on (a)(i)
(b)
(i) $\quad \mathrm{K}=\frac{\mathrm{pH}_{2}{ }^{4}}{\mathrm{pH}_{2} \mathrm{O}^{4}}$
(1) "p's" are essential NO [ ]
$=\frac{1.6^{4}}{1.2^{4}}=3.16 / 3.2$ and no units (1)

Consequential on $\mathrm{K}_{\mathrm{p}}$ expression provided no Fe or $\mathrm{Fe}_{3} \mathrm{O}_{4}$ included
(ii) $K_{p}$ decreases (1)

Q
W Because forward reaction release heat / exothermic
C* OR reverse reaction absorbs heat / endothermic (1)
Dependent on $K_{p}$ decreases
Do not allow $2^{\mathrm{ND}}$ mark if decrease is explained in terms of position moving to the left, UNLESS moving is a consequence of $\mathrm{K}_{\mathrm{p}}$ decreasing.
(c) IGNORE state symbols

$$
\begin{align*}
& \mathrm{X}: 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}+4 \mathrm{e}^{(-)} \rightarrow 4 \mathrm{OH}^{-}(\mathbf{1}) \quad \mathrm{OR} 1 / 2 \text { this OR multiples (1) } \\
& \mathrm{Y}: \mathrm{Fe} \rightarrow \mathrm{Fe}^{2+}+2 \mathrm{e}^{(-)} / \mathrm{Fe}-2 \mathrm{e}^{(-)} \rightarrow \mathrm{Fe}^{2+} \quad \text { (1) }  \tag{1}\\
& \mathrm{IF} \mathrm{X} \text { and } \mathrm{Y} \text { not identified } \mathbf{1} \text { (out of 2) } \\
& \text { iron(II) hydroxide } \quad \text { (1) } \\
& \text { ALLOW } \mathrm{Fe}(\mathrm{OH})_{2} /\left[\mathrm{Fe}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]
\end{align*}
$$

(d) covalent bonds labelled (1)
dative bonds labelled OR shown as arrows (1)
ALLOW dot and cross diagram (2)
Structure with Fe-Fe bond does not score first two marks

Tetrahedral (around Fe) (1)
ALLOW good 3-D diagram dependent on 4 covalent/ dative bonds around Fe
If $\mathrm{Al}_{2} \mathrm{Cl}_{6}$ ALLOW max 2 (out of 3)
Any mention of ionic $\mathbf{0}$ (out of 3)
(e) (i) add (aqueous) sodium hydroxide / ammonia (1) ALLOW OH ${ }^{-}$(aq) red/brown/foxy red/red-brown/rust ppt/solid (1)

OR
add (aqueous) potassium hexacyanoferrate(II)/hexacyanoferrate(II) ions (1)
(Prussian) blue ppt/solid (1) - ALLOW result for near miss spelling of reagent

OR
add (aqueous) potassium thiocyanate (1)
blood red (solution) (1) NOT ppt
(2 marks)
(ii) $\mathrm{Fe}^{3+}$ polarises the ( OH bond in water) ligands (1)
$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+\mathrm{H}_{2} \mathrm{O} \rightarrow\left[\mathrm{Fe}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right]^{2+}+\mathrm{H}_{3} \mathrm{O}^{+}$
OR in words
e.g. deprotonation (of the ligand) by the (solvent) water (1)
the $\mathrm{H}_{3} \mathrm{O}^{+} / \mathrm{H}^{+}(\mathrm{aq})$ ions make the solution acidic (1) - stand alone

