Mark Scheme (Results) January 2007

GCE

GCE Chemistry (6246/02)

General Guidance on Marking

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge, and for critical and imaginative thinking. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

Using the mark scheme

The mark scheme gives you:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
[] words inside square brackets are instructions or guidance for examiners.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
CQ (consequential) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Note:

If a candidate has crossed out an answer and written new text, the crossed out work should be ignored. If the candidate has crossed out work, but written no new text, the crossed out work for that question or part question should be marked, as far as it is possible to do so.

	EXPECTED ANSWER	ACCEPT	REJ ECT	MARK

1	(a)	(i)	$\begin{aligned} & \mathrm{Cu} \rightarrow \mathrm{Cu}^{2+}+2 \mathrm{e}^{(-)}(\mathbf{1}) \\ & \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{(-)} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O} \text { (1) } \\ & \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+3 \mathrm{Cu} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{Cu}^{2+}(\mathbf{1}) \end{aligned}$		(3 marks)
		(ii)	```initial moles \(\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}=0.00750\) (1) moles \(\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}\) reacted \(=0.00750-0.00342=0.00408\) (1) moles \(\mathrm{Cu}=3 \times 0.00408=0.01224\) (\(\mathbf{1}\)) mass \(\mathrm{Cu}=63.5 \times 0.01224=0.77724 \mathrm{~g}(\mathbf{1})\) \(\%\) purity \(=97.2 \%\) (1) consequential on equation in (i) if \(>100\) \%do not award \%mark unless commented on If not 3SF loses last mark```		(5 marks)
		(iii)	$\begin{aligned} & \mathrm{Cu}(\mathrm{OH})_{2} /\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right] \text { (1) } \\ & \mathrm{Cr}(\mathrm{OH})_{3} /\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}\right] \text { (1) } \end{aligned}$		(2 marks)
		(iv)	$\begin{aligned} & {\left[\mathrm{Cr}(\mathrm{OH})_{6}\right]^{3-} /\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)(\mathrm{OH})_{5}\right]^{2-} /\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{OH})_{4}\right]^{-} \mathbf{(1)}} \\ & \text { green (1) } \end{aligned}$	$\mathrm{Cr}(\mathrm{OH})_{4}$ pale/light/dark/ bright green	(2 marks)

| (b) | dissolve in minimum vol of boiling/hot water (1)
 filter through heated funnel / filter while hot (1)
 cool and filter (under reduced pressure) (1)
 wash in minimum/cold water (and dry) (1) | | |
| :--- | :--- | :--- | :--- | :--- |

	EXPECTED ANSWER	ACCEPT	REJ ECT	MARK

2	(a)				

	EXPECTED ANSWER	ACCEPT	REJ ECT	MARK

		(ii)	Molecule cannot be superimposed on its mirror image OR C atom to which four different groups are joined (1)	asymmetric C atom OR no plane/centre of symmetry		
	(d)	(i)	concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ OR conc. $\mathrm{H}_{3} \mathrm{PO}_{4}$ OR Al O_{3} OR names (1) dehydration OR elimination (1)	(1 mark)		
	(ii)	has two H atoms/two atoms the same at one end of the double bond (1)		(2 marks)		

	EXPECTED ANSWER	ACCEPT	REJ ECT	MARK

	EXPECTED ANSWER	ACCEPT	REJ ECT	MARK

| QWC | (f) | A has van der Waals'/dispersion/London forces and dipole-dipole
 forces (1)
 C has H bonding and van der Waals/dispersion/London and dipole-
 dipole forces (1)
 H bonding stronger than van der Waals/dispersion/ London forces
 and dipole-dipole forces (1)
 (therefore more energy required)
 Penalise lack of dipole-dipole once only | van der Waals in C is
 greater than in A because
 Chas more electrons |
| :--- | :--- | :--- | :--- | :--- |
| | (3 marks) | | |

	EXPECTED ANSWER	ACCEPT	REJ ECT	MARK

3	(a)	(i)	```working: ((4x 90.4) + (6x -242)) - (4x -46.2) OR \DeltaH=\Sigma\Delta\mp@subsup{H}{f}{\prime}(\mathrm{ Products) - \ SH}}\mp@subsup{\textrm{f}}{\textrm{f}}{(\mathrm{ Reactants) (1)} -905.6 \mp@subsup{\textrm{k mol}}{}{-1}\mathrm{ (1) OR - 906 kJ mol-1} Must have the sign and the units. IGNORE SF```		(2 marks)
	QWC	(ii)	high temp = high rate (1) more mols $>\mathrm{E}_{\text {act }}$ (1) high temp = low yield because reaction exothermic (1) so compromise temp used to balance rate and yield (1) catalyst causes higher rate by alternative route of lower $\mathrm{E}_{\text {act }}(\mathbf{1})$ but same yield as speeds up forward and back reactions OR same yield as k unchanged (1)	If endothermic in (i) opposite argument	(6 marks)
	(b)		change $=50 \times 4.18 \times 6.5=1358.5 \mathrm{~J}$ (1) for 0.025 mol at (J or kJ) by 0.025 mol (1) $-54.3 \mathrm{~kJ} \mathrm{~mol}^{-1} / 54300 \mathrm{~J} \mathrm{~mol}^{-1}$ e, sign and unit (1) RE SF	1359 to give - 54.4 or 54.36 1360 to give - 54.4 only	(3 marks)

	EXPECTED ANSWER	ACCEPT	REJ ECT	MARK

(c)	(i)	Add NaOH and warm (1) (Damp) red litmus in gas unchanged (showing no $\mathrm{NH}_{4}{ }^{+}$) (1) Add Al OR Devarda's alloy OR zinc +NaOH and warm; gas evolved turns red litmus blue (shows $\mathrm{NO}_{3}{ }^{-}$) (1)			(3 marks)
	(ii)	cation same charge OR are all +1 (1) but ionic radius gets bigger (1) so polarises anion less (1)	distorts anion less	atom gets bigger weakens bonds less	(3 marks)
					17 marks

	EXPECTED ANSWER	ACCEPT	REJ ECT	MARK

4	(a)	(i)	correct diag (only outer electrons needed) i.e.	all dots/crosses inner electrons too		(1 mark)
		(ii)	$\mathrm{H}^{\delta^{+}}$and $\mathrm{F}^{\delta-}(\mathbf{1})$ Large electronegativity difference OR forms strong intermolecular bond (1) Through lone pair OR because of small size of (H and) F atom(s) (1) Diagram can score $1^{\text {st }}$ and $3^{\text {rd }}$ marks			(3 marks)
	(b)	(i)	$\mathrm{HF}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{F}^{-}$(1) must show that water is there $\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \underline{\mathrm{O}}^{+}\right]\left[\mathrm{F}^{-}\right]}{[\mathrm{HF}]}$ OR $\begin{equation*} \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{F}^{-}\right]}{[\mathrm{HF}]} \tag{1} \end{equation*}$ IGNORE state symbols		$\mathrm{HF} \rightleftharpoons \mathrm{H}^{+}+\mathrm{F}^{-}$	(2 marks)

	(ii)	$\begin{aligned} & \text { moles HF at start }=0.1 \times 0.025=0.0025(\mathbf{1}) \\ & \text { moles } \mathrm{NaOH}=\text { moles } \mathrm{F}^{-}=0.12 \times 0.01=0.0012(\mathbf{1}) \\ & \text { moles } \mathrm{HF} \text { left }=0.0025-0.0012=0.0013(\mathbf{1}) \\ & \div \text { both moles by } 0.35(\mathbf{1}) \\ & \text { ie } \\ & {[\mathrm{HF}]_{\text {eqm }}=\frac{0.0013}{0.035}=0.03714\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)} \\ & {\left[\mathrm{FF}_{\text {eqm }}=\frac{0.0012}{0.035}=0.03429\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)\right.} \\ & {\left[\begin{array}{r} {\left[\mathrm{H}^{+}\right]=\mathrm{k}_{\mathrm{a}} \times \frac{[\mathrm{HF}]=0.000562 \times \underline{0.03714}}{[\mathrm{~F}]}} \\ 0.03429 \end{array}\right.} \\ & \mathrm{pH}=0.000609(\mathrm{~mol} \mathrm{dm}) \end{aligned}$			(6 marks)
QWC	(iii)	Large reservoir of both HF and F is needed (to absorb both acid and base) (1) however [F] is small (so cannot absorb acid) (1)			(2 marks)

	EXPECTED ANSWER	ACCEPT	REJ ECT	MARK

| (c) | (i) | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

