

Mark Scheme (Results) January 2007

GCE

GCE Chemistry (6246/02)

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH

General Guidance on Marking

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge, and for critical and imaginative thinking. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

Using the mark scheme

The mark scheme gives you:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

/ means that the responses are alternatives and either answer should receive full credit.

() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

[] words inside square brackets are instructions or guidance for examiners.

Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.

CQ (consequential) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Note:

If a candidate has crossed out an answer and written new text, the crossed out work should be ignored. If the candidate has crossed out work, but written no new text, the crossed out work for that question or part question should be marked, as far as it is possible to do so.

			EXPECTED ANSWER	ACCEPT	REJECT	MARK
1	(a)	(i)	$Cu \rightarrow Cu^{2+} + 2e^{(-)}$ (1)			
			$Cr_2O_7^{2-}$ + 14H ⁺ + 6e ⁽⁻⁾ \rightarrow 2Cr ³⁺ + 7H ₂ O (1)			
			$Cr_2O_7^{2-}$ + 14H ⁺ + 3Cu \rightarrow 2Cr ³⁺ + 7H ₂ O + 3Cu ²⁺ (1)			(3 marks)
		(ii)	initial moles $Cr_2O_7^{2-} = 0.00750$ (1)			
			moles $Cr_2O_7^{2-}$ reacted = 0.00750 - 0.00342=0.00408 (1)			
			moles Cu = 3 x 0.00408 = 0.01224 (1)			
			mass Cu = 63.5 x 0.01224 = 0.77724 g (1) % purity = 97.2 % (1)			
			consequential on equation in (i)			
			<i>if >100 % do not award % mark unless commented on If not 3SF loses last mark</i>			(5 marks)
		(iii)	$Cu(OH)_2 / [Cu(H_2O)_4(OH)_2]$ (1)			
			$Cr(OH)_3 / [Cr(H_2O)_3(OH)_3]$ (1)			(2 marks)
		(iv)	$[Cr(OH)_6]^{3-}/ [Cr(H_2O)(OH)_5]^{2-} / [Cr(H_2O)_2(OH)_4]^{-} (1)$	Cr(OH) ₄ ⁻		
			green (1)	pale/light/dark/ bright green		(2 marks)

	EXPECTED ANSWER	ACCEPT	REJECT	MARK
(b)	dissolve in minimum vol of boiling/hot water (1)			
	filter through heated funnel / filter while hot (1)			
	cool and filter (under reduced pressure) (1)			
	wash in minimum/cold water (and dry) (1)			(4 marks)
			1	otal 16 marks

	EXPECTED ANSWER	ACCEPT	REJECT	MARK
--	-----------------	--------	--------	------

2	(a)		H ₃ CQ		
		H₃C-			
		OR	OCH ₃		
		H₃C-			
					(1 mark)
	(b)	(i)	4 peaks (1)		
			area 3 : 2 : 2 : 3 (1) (can score (2) because 4 peaks clearly implied)		
			3 peaks area 3 : 4 : 3 (1 out of 2) 3 peaks area 6 : 2 : 2 / 3 : 1 : 1 (1 out of 2)		(2 marks)
		(ii)	[COC ₆ H ₄ OCH ₃] ⁺ / [CH ₃ COC ₆ H ₄ O] ⁺ charge essential		(1 mark)
	(C)	(i)	LiAlH₄ / NaBH₄ (1)	H ₂ +Ni/Pt/Pd, <i>OR</i> Na + ethanol	
			Reduction / nucleophilic addition (1)		
			secondary alcohol (1)		(3 marks)

EXPECTED ANSWER	ACCEPT	REJECT	MARK
-----------------	--------	--------	------

	(ii)	Molecule cannot be superimposed on its mirror image OR C atom to which four different groups are joined (1)	asymmetric C atom <i>OR</i> no plane/centre of symmetry		
					(1 mark)
(d)	(i)	concentrated H ₂ SO ₄ <i>OR</i> conc. H ₃ PO ₄ <i>OR</i> Al ₂ O ₃ <i>OR</i> names (1)			
		dehydration <i>OR</i> elimination (1)			(2 marks)
	(ii)	has two H atoms/two atoms the same at one end of the double bond (1)		"can be rotated about double bond"	(1 mark)

EXPECTED ANSWER ACCEPT REJECT MARK			ACCELL		MARK
------------------------------------	--	--	--------	--	------

(e) (1) for both arrows	(1) for intermediate	
	(1) for interinediate	
H C = 0 - 10 - c = c - H	$ \xrightarrow{H}_{3}C - O - O - O - O + H + H + H + H + H + H + H + H + H +$	
Н Н	(*)Br	
SBr		
(1) for arrow		
$H_{3}C-0-(\bigcirc)-\overset{H}{\underset{H}{\overset{L}{\overset{L}}}-\overset{L}{\underset{H}{\overset{L}{\overset{H}}}-\overset{L}{\underset{H}{\overset{H}{\overset{H}}}-\overset{L}{\underset{H}{\overset{H}{\overset{H}}}-\overset{L}{\underset{H}{\overset{H}{\overset{H}}}-\overset{L}{\underset{H}{\overset{H}{\overset{H}}}-\overset{L}{\underset{H}{\overset{H}{\overset{H}{\overset{H}}}-\overset{L}{\underset{H}{\overset{H}{\overset{H}}}-\overset{L}{\underset{H}{\overset{H}{\overset{H}{\overset{H}}}-\overset{L}{\underset{H}{\overset{H}{\overset{H}}}-\overset{L}{\underset{H}{\overset{H}{\overset{H}{\overset{H}}}-\overset{L}{\underset{H}{\overset{H}{\overset{H}{\overset{H}}}-\overset{L}{\underset{H}{\overset{H}{\overset{H}{\overset{H}}}-\overset{L}{\underset{H}{\overset{H}{\overset{H}{\overset{H}}}-\overset{L}{\underset{H}{\overset{H}{\overset{H}{\overset{H}}}-\overset{L}{\underset{H}{\overset{H}{\overset{H}{\overset{H}}}-\overset{L}{\underset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{H$	$H H H$ $H_3C - 0 - (0) - C - C - H$ $H_3C - 0 - (0) - C - C - H$ $H H$ H H H	
Notes:		
	tion is shown i.e. Br is on the wrong carbon	
atom, only 1 st and 3 rd	marks are available ntial but if shown arrow must start from it	(3 m
• allow arrow from ne		
• allow arrow to "+"		

EXPECTED ANSWER	ACCEPT	REJECT	MARK
-----------------	--------	--------	------

H bonding stronger than van der Waals/dispersion/ London forces and dipole-dipole forces (1) (therefore more energy required)van der Waals in C is greater than in A because C has more electrons		nas H bonding <u>and</u> van der Waals/dispersion/London <u>and</u> dipole- pole forces (1)		
Penalise lack of dipole-dipole once only	and of (there	<u>d</u> dipole-dipole forces (1) herefore more energy required)	greater than in A because	(3 marks)

EXPECTED ANSWER	ACCEPT	REJECT	MARK
-----------------	--------	--------	------

3	(a)	(i)	working: $((4x \ 90.4) + (6x - 242)) - (4x - 46.2)$ <i>OR</i> $\Delta H = \Sigma \Delta H_f(\text{Products}) - \Sigma \Delta H_f(\text{Reactants})$ (1) -905.6 kJ mol ⁻¹ (1) <i>OR</i> - 906 kJ mol ⁻¹ Must have the sign and the units. <i>IGNORE SF</i>		(2 marks)
	I	(ii)	high temp = high rate (1)		
			more mols > E _{act} (1)	<u>lf endothermic in (i)</u>	
			high temp = low yield because reaction exothermic (1)	opposite argument	
Q	WC		so compromise temp used to balance rate and yield (1)		
			catalyst causes higher rate by alternative route of lower E_{act} (1)		
			but same yield as speeds up forward and back reactions <i>OR</i> same yield as k unchanged (1)		(6 marks)
	(b)	heat	c change = 50 x 4.18 x 6.5 = 1358.5 J (1) for 0.025 mol	1359 to give - 54.4 or - 54.36	
		÷ heat (J or kJ) by 0.025 mol (1)		1360 to give - 54.4 only	
		$\Delta H = -54.3 \text{ kJ mol}^{-1} / 54300 \text{ J mol}^{-1}$ value, sign and unit (1)			
		IGNO	ORE SF		(3 marks)

EXPECTED ANSWER	ACCEPT	REJECT	MARK
-----------------	--------	--------	------

(c)	(i)	Add NaOH and warm (1)			
		(Damp) red litmus in gas unchanged (showing no NH_4^{+}) (1)			
		Add Al <i>OR</i> Devarda's alloy <i>OR</i> zinc + NaOH and warm; gas evolved turns red litmus blue (shows NO_3^-) (1)			(3 marks)
	(ii)	cation same charge <i>OR</i> are all +1 (1)		atom gets bigger weakens bonds less	
		but ionic radius gets bigger (1)			
		so polarises anion less (1)	distorts anion less		(3 marks)
			1	-	Total 17 marks

	EXPECTED ANSWER	ACCEPT	REJECT	MARK	
--	-----------------	--------	--------	------	--

4	(a)	(i)	correct diag (only outer electrons needed) i.e.	all dots/crosses inner electrons too		
			H ^o _x F ^o _{oo}			(1 mark)
		(ii)	H ^{§+} and F ^{§+} (1) Large electronegativity difference <i>OR</i> forms strong intermolecular bond (1) Through lone pair			
			<i>OR</i> because of small size of (H and) F atom(s) (1) <i>Diagram can score 1st and 3rd marks</i>			(3 marks)
	(b)	(i)	$HF + H_2O \Rightarrow H_3O^+ + F^- (1) \text{ must show that water is there}$ $K_a = \frac{[H_3O^+][F^-]}{[HF]}$ OR $K_a = \frac{[H^+][F^-]}{[HF]} (1)$		HF ⇒ H ⁺ + F ⁻	
			IGNORE state symbols			(2 marks)

		EXPECTED ANSWER	ACCEPT	REJECT	MARK
	(ii)	moles HF at start = $0.1 \times 0.025 = 0.0025$ (1)			
		moles NaOH = moles $F^- = 0.12 \times 0.01 = 0.0012$ (1)			
		moles HF left = 0.0025 - 0.0012 = 0.0013 (1)			
		÷ both moles by 0.35 (1) ie			
		$[HF]_{eqm} = \frac{0.0013}{0.035} = 0.03714 \text{ (mol dm}^{-3}\text{)}$			
		$[F^{-}]_{eqm} = \frac{0.0012}{0.035} = 0.03429 \text{ (mol dm}^{-3}\text{)}$			
		$[H^{+}] = k_a \times \underline{[HF]} = 0.000562 \times \underline{0.03714} \\ [F^{-}] \qquad 0.03429$			
		$= 0.000609 \pmod{10}$ (mol dm ⁻³) (1)			
		$pH = -log [H^+] = 3.22 (1)$			(6 marks)
		IGNORE SF			
QWC	(iii)	Large reservoir of both HF and F ⁻ is needed (to absorb both acid and base) (1)			(2 marks)
		however [F ⁻] is small (so cannot absorb acid) (1)			(2 marks)

EXPECTED ANSWER	ACCEPT	REJECT	MARK	
-----------------	--------	--------	------	--

(c)	(i)	F F F		(1 mark)
	(ii)	from 120 $^{\circ} \rightarrow$ 109.5 $^{\circ}$ / 109 $^{\circ}$ OR changes by 10.5/11 $^{\circ}$ (1) Boron (goes from 3) to 4 electron pairs (around atom) (1)		(2 marks)
				Fotal 17 marks