

Mark Scheme (Results) January 2008

GCE

GCE Chemistry (6246) Paper 2

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the mark scheme

- 1 / means that the responses are alternatives and either answer should receive full credit.
- 2 () means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
- 3 [] words inside square brackets are instructions or guidance for examiners.
- 4 Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
- 5 ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- show clarity of expression
- construct and present coherent arguments
- demonstrate an effective use of grammar, punctuation and spelling.

Full marks will be awarded if the candidate has demonstrated the above abilities.

Questions where QWC is likely to be particularly important are indicated "QWC" in the mark scheme BUT this does not preclude others.

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(a)	$CH_3COOH + C_2H_5OH \rightleftharpoons CH_3COOC_2H_5 + H_2O$ (1)	CH_3CO_2H \rightarrow CH_3CH_2 for C_2H_5	CH₃OCOC₂H₅	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(b)	catalyst /speed up reaction (1)		dehydrating agent	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(c)	flask with still head (1)			3
	condenser and a receiver (1)			
	thermometer at correct place (1)			
	penalty of (1) if apparatus sealed or open at the wrong place or doesn't work for some other reason.			

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
1.(d)	mol ethanoic acid = $\frac{12.6(0)}{60}$ = 0.21 (1)			3
	(mol ethyl ethanoate = 0.21)			
	theoretical mass ethyl ethanoate = 0.21 x 88 = 18.48 g or 18.5g (1)			
	% yield = 10.60 x 100 = 57 (1) 18.48			
	Allow 57.29 or 57.36 or 57.4			
	OR			
	Theoretical mol ethanoic acid = $\frac{12.60}{60}$ = 0.21(1)			
	(mol ethyl ethanoate = 0.21)			
	actual moles of ethyl ethanoate = 10.6 88 = 0.12 (1)			
	% yield = $\frac{0.12}{0.21}$ x100 = 57 (1)			
	Allow 57.1 or 57.14			
	CQ ON FORMULAE IN (a) but these must be possible compounds.			
	IGNORE S.F.			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(e)(i)	$C_2H_5OH + CH_3COCl$ $\rightarrow CH_3COOC_2H_5 + HCl (1)$	CH_3CH_2 for C_2H_5 \rightleftharpoons	CH₃OCOC₂H₅	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(e)(ii)	Reaction with ethanoic acid reaches equilibrium/is reversible OR Reaction with ethanoyl chloride is not reversible/goes to completion (1)		Reaction with ethanoic acid is incomplete	1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
1.(f)(i)	(Phenyl benzoate) must be soluble in			1
	the hot solvent and less/almost			
	insoluble in cold solvent (1)			

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
1.(f)(ii)	to remove insoluble/un-dissolved			1
	impurities (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(f)(iii)	to remove solid from soluble impurities (1)		Just 'collect the product'.	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(f)(iv)	to wash away remaining solution/soluble impurities /remove surface impurity. (1)			1

Questi		Acceptable Answers	Reject	Mark
Numb	er			
1.(f)(\	measure melting temperature (1)		Mix with known	2
	check value same as data book/sharp		sample and measure	
	melting point (1)		melting	
			temperature.	
	OR			
			Any other	
	Use gas-liquid chromatography (1)		instrumental	
	Showing only one peak (1)		method.	

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
2.(a)	ionic lattice (1)	Labelled sketch can		2
	Na ⁺ ions have 6 nearest neighbours of	score both marks but		
	Cl ⁻ ions and vice-versa / 6:6 co-	must have some 3D		
	ordination (1)	extension.		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(b)	electrostatic attractions (in solid NaCl) overcome (1)	Attractions overcome by solvation of ions scores (1) only		2
	by the attractions between the ions and dipoles in water (1); this can be shown in a diagram.			
	OR			
	Water has a high dielectric constant/relative permittivity (1) which reduces the forces of attraction between ions in the solution (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(c)	$NaCl(s) (+aq) \rightarrow Na^{+}(aq) + Cl^{-}(aq)$			3
	Na ⁺ (g) + Cl ⁻ (g) (+aq)			
	Cycle (1)			
	Arrows labelled with names or values (1)			
	Check arrow direction agrees with label/sign of the value			
	ΔH _{soln} = -406-364-(-771) = +1 (kJ mol ⁻¹) (1) + sign not essential		Negative value	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(d)	sodium hydroxide/NaOH (1) hydrogen / H_2 (1) anode $2Br^- \rightarrow Br_2 + 2e^{(-)}$ OR $2Br^ 2e^{(-)} \rightarrow Br_2$ (1) or halved.		H Br	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(e)(i)	H H H H (* Br ') H C C(D) (* Br ') H Br H both arrows (1) carbocation structure (1)	H H H H as intermediate		3
	H H H H H H H H H H H H H H H H H H H	lone pair not essential, arrow can start at - on Br ⁻ and go to + on C		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(e)(ii)	initial attack (on ethene) is by an electrophile/Br ^{δ+} (1)			4
	no Cl ⁺ / Cl ^{δ+} available as the electrophile (so no dichloroethane formed) (1)			
	then (nucleophilic) attack by Br ⁻ (1)			
	Cl ⁻ can replace Br ⁻ (as nucleophile, so 1-bromo-2-chloroethane is formed) (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(a)(i)	[(CH ₃) ₃ CCl] increases by 1.5 while [OH] remains constant, rate increases by 1.5 OR In expts A and B, [(CH ₃) ₃ CCl] increases by 1.5 and rate increases by 1.5 (1) so first order (1) [OH] zero order, with some explanation (1)			3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(a)(ii)	$(CH_3)_3C^{-\overset{\bullet}{C}I} \longrightarrow (CH_3)_3C^+ + CI^-$		S _N 1 mechanism if [OH ⁻] first order	3
	(1) arrow (1) both ions			
	$(CH_3)_3C^+$ $(:)OH^- \longrightarrow (CH_3)_3C-OH$ (1) arrow			
	Must be $S_N 2$ mechanism if 1^{st} order wrt OH^- in (i):			
	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ $			
	each arrow (1) x 2 intermediate (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(b)(i)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1

Question Number	Correct Ansv	wer	Acceptable Answers	Reject	Mark
3.(b)(ii)	alkene				4
	(aqueous) bromine (1) colourless(1)	orange to			
	OR				
	(aqueous) potassium ma (ignore alkaline/acid) (1 colourless/brown (1)	• , ,		Purple to green.	
	aldehyde				
	any one matching pair fr				
	reagent (1) of	bservation (1):			
	_	lue (soln) to red/brown ppt	Benedict's, same observation.	2,4 DNP	
		ilver mirror or	Ammoniacal AgNO ₃ ,		
		black ppt	same obs.		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(b)(iii)	(with NaBH ₄) $H_{3}C = C - CH_{2} - CH_{2} - C - CH_{2} - C - CH_{2} - C - CH_{3} + C - CH_{4} - C - CH_{5} - C - CH_{5$			2
	(with HBr) $\begin{array}{ccccccccccccccccccccccccccccccccccc$			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(b)(iv)	$C_{10}H_{18}O + 14O_2 \rightarrow 10CO_2 + 9H_2O$ (1) Ignore any state symbols Moles citronellal = 1.0/154 (1) = 6.49x10 ⁻³ Moles $CO_2 = 10x 6.49x10^{-3}$ (1) = 6.49x10 ⁻²			4
	Volume CO ₂ = 24 x 6.49 x10 ⁻² = 1.56 dm ³ (1) allow 1.6 Allow cq from incorrectly balanced equation. Ignore sf OR 154g citronellal gives 240dm ³ CO ₂ (1) Vol CO ₂ from 1 g = 240/154 (1)			
	= 1.56 dm ³ (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(a)	silicon - giant atomic/ giant covalent /giant molecular/macromolecular (1) phosphorus and chlorine - (simple) molecular (1) covalent bonds broken in Si are			5
	stronger than intermolecular/dispersion/ Van der Waals'/ London/ induced dipole forces (1)			
	phosphorus is P ₄ and chlorine is Cl ₂ (1)			
	P ₄ has more electrons (per molecule) so stronger dispersion (etc) forces (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(b)	PCl ₄ ⁺ tetrahedral (1) PCl ₆ ⁻ octahedral (1) 4 or 6 pairs of electrons as far apart as possible to minimise repulsion (1)	correct 3-D diagrams		3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(c)	name of any specific alcohol (1) ROH + $PCl_5 \rightarrow RCl + HCl + POCl_3$ (1) [R must apply to the specific alcohol] OR name of any specific carboxylic acid (1) RCOOH + $PCl_5 \rightarrow RCOCl + HCl + POCl_3$ (1) [R must apply to the specific acid]	equation with 'R' if mark lost for not giving a specific example	Just 'alcohol' Just 'acid'	2

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number		1:		
4.(d)	$PCl_5 \rightleftharpoons PCl_3 + Cl_2$	If eqm moles PCl ₅ = 0.67 and PCl ₃ =Cl ₂ =0.33		5
	eqm moles: 0.33 0.67 0.67 (1)	answer = 0.5 and can score last 3 marks		
	mole fraction: $\frac{0.33}{1.67}$ $\frac{0.67}{1.67}$ $\frac{0.67}{1.67}$ (1)			
	partial pressures: <u>0.33x4</u>			
	= 0.79 = 1.605 = 1.605	If 1.6 used here then final answer is 3.24		
	$K_p = \frac{pPCl_3 \times pCl_2}{pPCl_5}$ (1)			
	= 3.26 and atm(1)			
	OR			
	$PCl_5 \rightleftharpoons PCl_3 + Cl_2$			
	1/3 2/3 2/3 eqm moles (1)			
	0.2 0.4 0.4 mole fraction (1)			
	0.8 1.6 1.6 partial press (1)			
	$K_p = \frac{pPCl_3 \times pCl_2}{pPCl_5}$ (1)			
	= 3.2 atm (1)			

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
4.(e)(i)	$H_3PO_4 + 2NaOH \rightarrow Na_2HPO_4 + 2H_2O$			1
	(1)			
	O.D.			
	OR			
	$H_3PO_4 + 2OH^- \rightarrow HPO_4^{2-} + 2H_2O$ (1)			
	$ \Pi_{3}PO_{4} + 2O\Pi \rightarrow \Pi PO_{4} + 2\Pi_{2}O(1)$			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(e)(ii)	any point between ◆◆			1