Mark Scheme (Results) January 2008

GCE

GCE Chemistry (6246) Paper 2

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- \quad All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the mark scheme

1 / means that the responses are alternatives and either answer should receive full credit.
2 () means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
3 [] words inside square brackets are instructions or guidance for examiners.
4 Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
$5 \mathrm{ecf} / \mathrm{TE} / \mathrm{cq}$ (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- show clarity of expression
- construct and present coherent arguments
- demonstrate an effective use of grammar, punctuation and spelling.

Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated "QWC" in the mark scheme BUT this does not preclude others.

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(a)	$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}$ $+\mathrm{H}_{2} \mathrm{O}(\mathbf{1)}$	$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ $\mathrm{CH}_{3} \mathrm{CH}_{2}$ for $\mathrm{C}_{2} \mathrm{H}_{5}$	$\mathrm{CH}_{3} \mathrm{OCOC}_{2} \mathrm{H}_{5}$	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(b)	catalyst /speed up reaction (1)		dehydrating agent	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(c)	flask with still head (1)			
condenser and a receiver (1)				
thermometer at correct place (1)				
penalty of (1) if apparatus sealed or open at the wrong place or doesn't work for some other reason.		3		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1. (d)	$\begin{aligned} & \text { mol ethanoic acid }=\frac{12.6(0)}{60}=0.21(1) \\ & \text { (mol ethyl ethanoate }=0.21) \\ & \text { theoretical mass ethyl ethanoate }= \\ & 0.21 \times 88=18.48 \mathrm{~g} \text { or } 18.5 \mathrm{~g}(1) \\ & \% \text { yield }=\frac{10.60}{18.48} \times 100=57(1) \end{aligned}$ Allow 57.29 or 57.36 or 57.4 OR Theoretical mol ethanoic acid $=\frac{12.60}{60}$ $=0.21(1)$ (mol ethyl ethanoate $=0.21$) actual moles of ethyl ethanoate $=\frac{10.6}{88}$ $=0.12 \text { (1) }$ $\%$ yield $=\frac{0.12}{0.21} \times 100=57(1)$ Allow 57.1 or 57.14 CQ ON FORMULAE IN (a) but these must be possible compounds. IGNORE S.F.			3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(e)(i)	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{COCl}^{(1)}$ $\rightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{HCl}(1)$	$\mathrm{CH}_{3} \mathrm{CH}_{2}$ for $\mathrm{C}_{2} \mathrm{H}_{5}$ \rightleftarrows	$\mathrm{CH}_{3} \mathrm{OCOC}_{2} \mathrm{H}_{5}$	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(e)(ii)	Reaction with ethanoic acid reaches equilibrium/is reversible OR Reaction with ethanoyl chloride is not reversible/goes to completion (1)	Reaction with ethanoic acid is incomplete	1	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(f)(i)	(Phenyl benzoate) must be soluble in the hot solvent and less/almost insoluble in cold solvent (1)		1	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(f)(ii)	to remove insoluble/un-dissolved impurities (1)			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(f)(iii)	to remove solid from soluble impurities (1)	Just 'collect the product'.	1	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(f)(iv)	to wash away remaining solution/soluble impurities /remove surface impurity. (1)			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(f)(v)	measure melting temperature (1) check value same as data book/sharp melting point (1)		Mix with known sample and measure melting temperature.	2
OR	Use gas-liquid chromatography (1) Showing only one peak (1)	Any other instrumental method.		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(a)	ionic lattice (1) $\mathrm{Na}^{\text {tions have 6 nearest neighbours of }}$ Cl ions and vice-versa / 6:6 co- ordination (1)	Labelled sketch can score both marks but must have some 3D extension.	2	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(b)	electrostatic attractions (in solid NaCl) overcome (1) by the attractions between the ions and dipoles in water (1) ; this can be shown in a diagram. OR	Attractions overcome by solvation of ions scores (1) only		2
Water has a high dielectric constant/relative permittivity (1) which reduces the forces of attraction between ions in the solution (1)				

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(c)	Arrows labelled with names or values (1) Check arrow direction agrees with label/sign of the value $\begin{aligned} \Delta \mathrm{H}_{\text {soln }} & =-406-364-(-771) \\ & =+1\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)(1) \end{aligned}$ + sign not essential		Negative value	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(d)	lodium hydroxide/ $\mathrm{NaOH}(\mathbf{1})$ hydrogen $/ \mathrm{H}_{2}(\mathbf{1})$ anode 2 $\mathrm{Br}^{-} \rightarrow \mathrm{Br}_{2}+2 \mathrm{e}^{(-)}$ OR $2 \mathrm{Br}^{-}-2 \mathrm{e}^{(-)} \rightarrow \mathrm{Br}_{2}(\mathbf{1})$ or halved.		H Br	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(e)(i)	both anows (1) carbocation structure (1) arrow (1)	 as intermediate lone pair not essential, arrow can start at - on Br^{-}and go to + on C		3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(e)(ii)	initial attack (on ethene) is by an electrophile/ $\mathrm{Br}^{\delta+}(\mathbf{1})$ no $\mathrm{Cl}^{+} / \mathrm{Cl}^{\delta^{+}}$available as the electrophile (so no dichloroethane formed) (1) then (nucleophilic) attack by $\mathrm{Br}^{-}(1)$ Cl^{-}can replace Br (as nucleophile, so 1 -bromo-2-chloroethane is formed) (1)		4	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(a)(i)	$\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}\right]$ increases by 1.5 while $\left[\mathrm{OH}^{-}\right.$ $]$remains constant, rate increases by 1.5 OR In expts A and B, $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}\right]$ increases by 1.5 and rate increases by 1.5 (1) so first order (1)		3	
$\left[\begin{array}{ll}{\left[\mathrm{OH}^{-}\right] \text {zero order, with some }} \\ \text { explanation (1) }\end{array}\right.$			3	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3. (a)(ii)	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\stackrel{\mathrm{Cl}}{\mathrm{Cl}} \longrightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{+}+\mathrm{Cl}^{-}$ (1) arrow (1) both ions $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{+} \leftrightharpoons(:) \mathrm{OH}^{-} \longrightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{OH}$ (1) arrow Must be $\mathrm{S}_{\mathrm{N}} 2$ mechanism if $1^{\text {st }}$ order wrt OH^{-}in (i):		$\mathrm{S}_{\mathrm{N}} 1$ mechanism if [OH^{-}] first order	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(b)(i)				1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3. (b)(ii)	alkene (aqueous) bromine (1) orange to colourless(1) OR (aqueous) potassium manganate(VII) (ignore alkaline/acid) (1) purple to colourless/brown (1) aldehyde any one matching pair from: reagent (1) observation (1): Fehling's solution blue (soln) to red/brown ppt Tollens' reagent silver mirror or black ppt	Benedict's, same observation. Ammoniacal AgNO_{3}, same obs.	Purple to green. 2,4 DNP	4

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(b)(iv)	$\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}+14 \mathrm{O}_{2} \rightarrow 10 \mathrm{CO}_{2}+9 \mathrm{H}_{2} \mathrm{O}(1)$ Ignore any state symbols $\begin{aligned} \text { Moles citronellal } & =1.0 / 154(\mathbf{1}) \\ & =6.49 \times 10^{-3} \end{aligned}$ Moles $\mathrm{CO}_{2}=10 \times 6.49 \times 10^{-3}$ (1) $=6.49 \times 10^{-2}$ Volume $\mathrm{CO}_{2}=24 \times 6.49 \times 10^{-2}$ $=1.56 \mathrm{dm}^{3}(1) \text { allow } 1.6$ Allow cq from incorrectly balanced equation. Ignore sf OR 154 g citronellal gives $240 \mathrm{dm}^{3} \mathrm{CO}_{2}$ (1) Vol CO_{2} from $1 \mathrm{~g}=240 / 154$ (1) $=1.56 \mathrm{dm}^{3}(1)$			4

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(a)	silicon - giant atomic/ giant covalent /giant molecular/macromolecular (1) phosphorus and chlorine - (simple) molecular (1) covalent bonds broken in Si are stronger than intermolecular/dispersion/ Van der Waals'/ London/ induced dipole forces (1) phosphorus is P4 and chlorine is Cl_{2} (1) P $_{4}$ has more electrons (per molecule) so stronger dispersion (etc) forces (1)		5	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(b)	PCl_{4}^{+}tetrahedral (1) PCl_{6}^{-}octahedral (1) 4 or 6 pairs of electrons as far apart as possible to minimise repulsion (1)	correct 3-D diagrams	3	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4. (c)	name of any specific alcohol (1) $\mathrm{ROH}+\mathrm{PCl}_{5} \rightarrow \mathrm{RCl}+\mathrm{HCl}+\mathrm{POCl}_{3}$ (1) [R must apply to the specific alcohol] OR name of any specific carboxylic acid (1) $\mathrm{RCOOH}+\mathrm{PCl}_{5} \rightarrow \mathrm{RCOCl}+\mathrm{HCl}+$ $\mathrm{POCl}_{3}(1)$ [R must apply to the specific acid]	equation with ' R ' if mark lost for not giving a specific example	Just ‘alcohol’ Just 'acid’	2

Question	Correct Answer	Acceptable Answers	Reject	Mark
4. (d)		If eqm moles $\mathrm{PCl}_{5}=$ 0.67 and $\mathrm{PCl}_{3}=\mathrm{Cl}_{2}=0.33$ answer $=0.5$ and can score last 3 marks If 1.6 used here then final answer is 3.24		5

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(e)(i)	$\mathrm{H}_{3} \mathrm{PO}_{4}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{HPO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$ $(\mathbf{1})$ OR $\mathrm{H}_{3} \mathrm{PO}_{4}+2 \mathrm{OH}^{-} \rightarrow \mathrm{HPO}_{4}{ }^{2-}+2 \mathrm{H}_{2} \mathrm{O}$ (1)			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(e)(ii)			1	

