Student Book Unit 4 Test 1 Mark scheme (Chapters 1.1 to 1.5)

1 a (i) Colorimeter / spectrophotometer (1); calibrate the colorimeter to correlate with the iodine concentration (1)
(ii) Titration (1); with sodium thiosulfate (1)
(iii) No need for quenching / 'you can get the graph directly' / difficulty of accurate timing (1)
b (i) Constant (1)
(ii) Zero (1)
(iii) I_{2} is not involved in it (1)
or reaction between propanone and H^{+}is rate-determining step
(iv) Two (1)
c (i) Iodoform / triiodomethane (1)
$\mathrm{CH}_{3} \mathrm{COCH}_{3}+3 \mathrm{I}_{2}+4 \mathrm{NaOH} \rightarrow \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{CHI}_{3}+3 \mathrm{NaI}+3 \mathrm{H}_{2} \mathrm{O}$ (2)
(allow (1) for correct organic products)
(ii)

(iii) Potassium dichromate turns green with alcohol, not with ketone (1)
any test that works is acceptable
(Total 15 marks)
2 a Halving [RX] halves the rate, so first order w.r.t. RX (1) Halving $\left[\mathrm{OH}^{-}\right]$halves the rate, so first order w.r.t. OH^{-}(1) explanation of either statement (1)
So, rate $=k[\mathrm{RX}]\left[\mathrm{OH}^{-}\right]$(1)
b $k=\frac{\text { rate }}{[\mathrm{RX}]\left[\mathrm{OH}^{-}\right]}=\frac{8 \times 10^{-6}}{0.01 \times 0.04}=0.0215(\mathbf{1}) \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ (1)

3 a incompletely / partially / slightly dissociated (1)
or dissociation varies with concentration
allow poor proton donor or conjugate base strong
b (i) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}+\mathrm{H}^{+}$
or $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$(1)
$K_{\mathrm{a}}=\frac{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right.}$ or $\frac{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right]}(\mathbf{1})$
Mark consequentially for second mark if acid is incorrect but must have H^{+} or $\mathrm{H}_{3} \mathrm{O}^{+}$
(ii) $\left[\mathrm{H}^{+}\right]=\sqrt{K_{\mathrm{a}} \times c}=\sqrt{1.30 \times 10^{-5} \times 0.01}=3.6 \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)(\mathbf{1})$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log \left(3.6 \times 10^{-4}\right)=3.4$ (1)
Any of:

- any rounding should be consistent
- assumes dissociation of acid is small / concentration of acid does not change (1)
if made no assumptions i.e. solved quadratic and got correct answer (3)
penalise arithmetic errors once only

Student Book Unit 4 Test 1 Mark scheme (cont.)

(iii) pH down means $\left[\mathrm{H}^{+}\right]$up (1)

Dissociation endothermic (1)
Equilibrium shifts in endothermic direction when temperature rises (1)
mark consequentially
(Total 9 marks)
4 a (i) $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$or $\log \frac{1}{\left[\mathrm{H}^{+}\right]}$(1)
(ii) $K_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$(1)
accept $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$instead of $\left[\mathrm{H}^{+}\right]$
b (i) $\left[\mathrm{H}^{+}\right]=0.200 \mathrm{~mol} \mathrm{dm}^{-3} ; \mathrm{pH}=0.70$ (1)
allow caveat or appropriate better chemistry, e.g. cannot be calculated because K_{a} not given if calculated as a monobasic acid they must explain why
(ii) $\left[\mathrm{OH}^{-}\right]=0.0500 \mathrm{~mol} \mathrm{dm}^{-3} ;\left[\mathrm{H}^{+}\right]=\frac{1 \times 10^{-14}}{0.05}=2 \times 10^{-13}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)(1)$; $\mathrm{pH}=12.7$ (1)
not 13
allow calculation from $\mathrm{pOH}=1.3$, allow even if called pH
penalise 4 or more significant figures
mark consequentially if answer higher than 7 but less than 15
c (i) maintains pH nearly constant if small amounts of acid or base added (1) accept resists change to pH
(ii) $K_{\mathrm{a}}=1.8 \times 10^{-5}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}=\frac{\left[\mathrm{H}^{+}\right][\text {salt }]}{[\text { acid }]}$ (1)
$\left[\mathrm{H}^{+}\right]=1.8 \times 10^{-5} \times \frac{0.015}{0.055}=4.91 \times 10^{-6}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)(1)$
$\mathrm{pH}=-\log 4.91 \times 10^{-6}=5.3(1)$
Mark consequentially if salt and acid wrong way up
Incorrect if used 0.015 twice but would get final mark consequentially
(Total 9 marks)

5 a Reacts in both directions (1); at equal rates (1)
must mention rates for second mark
b 70-200 atm (1); high pressure moves equilibrium to right (1)
$350-550^{\circ} \mathrm{C}$ (1); low temperature moves equilibrium to right (1)
but rate too slow (1); (so use) iron or iron oxide catalyst (1) if no other marks awarded high pressure and low temperature (1) if both given
c Makes it happen faster (1); no effect on equilibrium position (1) give mark if mentioned in part \boldsymbol{b}

Student Book Unit 4 Test 1 Mark scheme (cont.)

6 a Correct expression for K_{p} (1); no units or $\frac{\mathrm{atmm}^{2}}{\mathrm{~atm}{ }^{2}}$ (1) (2)no square brackets
b (i) Mole fraction $\mathrm{HI}=0.78, \mathrm{H}_{2}=\mathrm{I}_{2}=0.11$ (1)Partial pressure $\mathrm{HI}=1.56 \mathrm{~atm}(1) ; \mathrm{H}_{2}=\mathrm{I}_{2}=0.22 \mathrm{~atm}$ (1)(3)
(ii) $K_{\mathrm{p}}=\frac{1.56^{2}}{0.22^{2}}$ (1) (consequential on values in part \mathbf{b} (i) and expression in part \mathbf{a})$=50.28$ or 50.3 or $50(1)$(2)
c (i) $2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{I}_{2} \rightarrow \mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}+2 \mathrm{NaI}$; species (1); balanced (1)
balancing mark conditional on correct species
ionic equation acceptable
(ii) Starch (1); blue/black to colourless (1)
(2)
not white or clear in place of colourless
(iii) Ease of discernibility compared (1);
Actual colour change for iodine / thiosulfate - i.e. yellow \rightarrow colourless (1)

