

Student Book Unit 4 Test 1 Mark scheme (Chapters 1.1 to 1.5)

1	a		/ spectrophotometer (1); calibrate the colorimeter to correlate with oncentration (1)	h		
		(ii) Titration (1)	; with sodium thiosulfate (1)			
		(iii) No need for quenching / 'you can get the graph directly' / difficulty of timing (1)				
	b	(i) Constant (1)				
		(ii) Zero (1)				
		(iii) I_2 is not invo or reaction be	lved in it (1) tween propanone and H^+ is rate-determining step			
		(iv) Two (1)		(4)		
	c	riiodomethane (1) $_{3} + 3I_{2} + 4NaOH \rightarrow CH_{3}COONa + CHI_{3} + 3NaI + 3H_{2}O$ (2) correct organic products)				
		(ii) CH₃—C—	CH ₃ —C— (2)			
		0	OH			
			chromate turns green with alcohol, not with ketone (1) works is acceptable	(6)		
			(Total 15 mai	rks)		
2	 a Halving [RX] halves the rate, so first order w.r.t. RX (1) Halving [OH⁻] halves the rate, so first order w.r.t. OH⁻ (1) <i>explanation of either statement (1)</i> 					
		So, rate = k [RX]	[OH ⁻] (1)	(3)		
	b	$k = \frac{\text{rate}}{[\text{RX}][\text{OH}^-]}$	$=\frac{8\times10^{-6}}{0.01\times0.04}=0.0215 \text{ (1) } \text{dm}^3 \text{mol}^{-1} \text{s}^{-1} \text{ (1)}$	(2)		
		(Total 5 marks)				
3	a		rtially / slightly dissociated (1) <i>ies with concentration</i>	(1)		
		allow poor proton	donor or conjugate base strong			
	b	or CH_3CH_2 $K_a = \frac{[CH_3C]}{[CH_3C]}$	$POH \Rightarrow CH_{3}CH_{2}COO^{-} + H^{+}$ $COOH + H_{2}O \Rightarrow CH_{3}CH_{2}COO^{-} + H_{3}O^{+} (1)$ $CH_{2}COO^{-}[H^{+}] = Or \frac{[CH_{3}CH_{2}COO^{-}][H_{3}O^{+}]}{[CH_{3}CH_{2}COOH]} (1)$ $Quentially for second mark if acid is incorrect but must have H^{+}$	(2)		
		(ii) $[H^+] = \sqrt{K_a}$	$\overline{\times c} = \sqrt{1.30 \times 10^{-5} \times 0.01} = 3.6 \times 10^{-4} \text{ (mol dm}^{-3}\text{) (1)}$ H ⁺] = $-\log(3.6 \times 10^{-4}) = 3.4$ (1)	(-)		
		 assumes not chang if made no as 	ding should be consistent dissociation of acid is small / concentration of acid does ge (1) sumptions i.e. solved quadratic and got correct answer (3) sumetic errors once only	(3)		

	(iii)	 pH down means [H⁺] up (1) Dissociation endothermic (1) Equilibrium shifts in endothermic direction when temperature rises (1) (3) mark consequentially 		
		(Total 9 marks)		
a	(i)	$pH = -\log [H^+] \text{ or } \log \frac{1}{[H^+]}$ (1)		
	(ii)	$K_{w} = [H^{+}] [OH^{-}] (1) $ accept $[H_{3}O^{+}]$ instead of $[H^{+}]$ (2)		
b	(i)	$[H^+] = 0.200 \text{ mol dm}^{-3}$; pH = 0.70 (1) allow caveat or appropriate better chemistry, e.g. cannot be calculated because K_a not given if calculated as a monobasic acid they must explain why		
	(ii)	$[OH^{-}] = 0.0500 \text{ mol } dm^{-3}; [H^{+}] = \frac{1 \times 10^{-14}}{0.05} = 2 \times 10^{-13} \text{ (mol } dm^{-3}) \text{ (1)};$ pH = 12.7 (1) (3) not 13 allow calculation from pOH = 1.3, allow even if called pH penalise 4 or more significant figures mark consequentially if answer higher than 7 but less than 15		
c	(i) (ii)	maintains pH <i>nearly</i> constant if <i>small</i> amounts of acid or base added (1) accept resists change to pH $K_{a} = 1.8 \times 10^{-5} = \frac{[\text{H}^{+}] [\text{CH}_{3}\text{COO}^{-}]}{[\text{CH}_{3}\text{COOH}]} = \frac{[\text{H}^{+}] [\text{salt}]}{[\text{acid}]} (1)$		
		$[H^+] = 1.8 \times 10^{-5} \times \frac{0.015}{0.055} = 4.91 \times 10^{-6} \pmod{dm^{-3}} $ (1) $pH = -\log 4.91 \times 10^{-6} = 5.3 $ (1) (4) Mark consequentially if salt and acid wrong way up Incorrect if used 0.015 twice but would get final mark consequentially		
		(Total 9 marks)		
a		Reacts in both directions (1); at equal rates (1) must mention rates for second mark		
b	70–200 atm (1); high pressure moves equilibrium to right (1) 350–550 °C (1); low temperature moves equilibrium to right (1) but rate too slow (1); (so use) iron or iron oxide catalyst (1) <i>if no other marks awarded high pressure and low temperature</i> (1) <i>if both given</i>			
c	Makes it happen faster (1); no effect on equilibrium position (1) give mark if mentioned in part b			
	6.7	(Total 9 marks)		

219

6

Student Book Unit 4 Test 1 Mark scheme (cont.)

a	Correct expression for K_p (1); no units or $\frac{2tm^2}{3tm^2}$ (1) no square brackets					
b	(i)	Mole fraction HI = 0.78, $H_2 = I_2 = 0.11$ (1) Partial pressure HI = 1.56 atm (1); $H_2 = I_2 = 0.22$ atm (1)	(3)			
	(ii) $K_{\rm p} = \frac{1.56^2}{0.22^2}$ (1) (consequential on values in part b (i) and expression in part a)					
		= 50.28 or 50.3 or 50 (1)	(2)			
с	(i)	$2Na_2S_2O_3 + I_2 \rightarrow Na_2S_4O_6 + 2NaI$; species (1); balanced (1) balancing mark conditional on correct species ionic equation acceptable	(2)			
	(ii)	Starch (1); blue/black to colourless (1) not white or clear in place of colourless	(2)			
	(iii)	Ease of discernibility compared (1); Actual colour change for iodine / thiosulfate – i.e. yellow \rightarrow colourless (1)	(2)			
	(Total 13 marks)					