

Student Book Unit 5 Test 1 Mark scheme (Chapters 2.1 to 2.2)

1	a	(i)	+2 to +2.5 (or 0.5) (1) $I_2 + 2S_2O_3^{2-} \rightarrow S_4O_6^{2-} + 2I^-$ (1) allow $S_4O_6^{2-} + 2I^- \rightleftharpoons I_2 + 2S_2O_3^{2-}$ but not $S_4O_6^{2-} + 2I^- \rightarrow I_2 + 2S_2O_3^{2-}$	(2)	
		(ii)	+2 to +6 (or 4) (1) $4XCl_2 + 2S_2O_3^{2-} + 5H_2O \rightarrow 8Cl^- + 2SO_4^{2-} + 10H$ species (1); balanced (1) allow $8Cl^- + 2SO_4^{2-} + 10H^+ \rightleftharpoons 4Cl_2 + 2S_2O_3^{2-} + 5H_2O$ but not $8Cl^- + 2SO_4^{2-} + 10H^+ \rightarrow 4Cl_2 + 2S_2O_3^{2-} + 5H_2O$ if the equations are given the wrong way round with an \rightarrow but the oxidation number changes are given correctly for these equations as -0.5 and -4 then the 2 oxidation state marks can be given	(3)	
	b	The or ba accu	e colour change is not sharp / not easy to see (1); no suitable indicator (1) romine is volatile / is lost from the system (1); therefore results are not wrate / reliable (1)	(2)	
			(Total 2	7 marks)	
2	 2 a Potential / e.m.f. / voltage / half-cell of electrode (1); relative to (sta hydrogen electrode (1); solutions of unit concentration (1); and ga 1 atm / standard temperature (1) 		ential / e.m.f. / voltage / half-cell of electrode (1); relative to (standard) rogen electrode (1); solutions of unit concentration (1); and gases at m / standard temperature (1)	(max 2)	
b Vol so a allo			Woltmeter requires two connections / measure potential difference (1); and to another electrode is introduced into system (1)(2)allow 'for redox has to have a source / sink of electrons' (1)		
	c	(i)	Reaction in which a given species / substance / molecule / ion is <i>simultaneously both</i> oxidised and reduced (1) <i>not atom</i>		
		(ii)	E_{cell}^{\oplus} for disproportionation is $+1.23\text{V} - (+1.70\text{V}) = -0.47\text{V}$ (1) or equivalent in words (1) (This is negative) so reaction does not occur (1)	(3)	
			second mark is consequential on the first statement (Total 2)	7 marks)	
3	a	(i)	$Cu + 4H^+ + 2NO_3^- \rightarrow Cu^{2+} + 2NO_2 + 2H_2O$; species (1); balanced (1 or similar reaction with Zn or Ni balancing mark conditional on correct species)	
		(ii)	Redox (1)	(3)	
	b	(i)	$[Cu(H_2O)_6]^{2+}; [Ni(H_2O)_6]^{2+}; [Zn(H_2O)_6]^{2+} \text{ or } [Zn(H_2O)_4]^{2+}$ 3 correct (2); 2 correct (1); 1 correct (0)		
		(ii)	Cu(OH) ₂ (1); Ni(OH) ₂ (1) ignore any hydration if $Zn(OH)_2$ is included then (-1)		
		(iii)	$[Zn(OH)_4]^{2-}$ or $[Zn(OH)_3]^-$ or ZnO_2^{2-} (1) ignore any hydration in the first two, but the last must not include any hydratic not $[Zn(OH)_6]^{4-}$	(5)	

Student Book Unit 5 Test 1 Mark scheme (cont.)

	c	(i)	e.g. $[Cu(H_2O)_6]^{2+} + 2OH^- \rightarrow Cu(OH)_2 + 6H_2O$; species (1); babalancing mark conditional on correct species H ₂ Os on right-hand side must add up to 6	llanced (1)		
		(ii)	deprotonation or acid-base (1) not hydrolysis or precipitation	(3)		
	d	NaC or w solu Qua	DH to remove nitric acid (1); which would interfere with the redox would oxidise iodide ions or solution must be acidic to keep Cu^{2+} io tion (1) ality of language (1)	reaction ns in (3)		
	e	(i)	$2Na_2S_2O_3 + I_2 \rightarrow Na_2S_4O_6 + 2NaI (1)$ or $Na_2S_2O_3 + \frac{1}{2}I_2$ etc. accept ionic equation Add starch when solution pale yellow (1) not towards the end point	(-)		
		(ii)	If added too soon gives ppt. or insoluble complex (1) No. of moles $S_2O_3^{2-} = \frac{0.1 \times 18.7}{1000}$ (1) relate to moles Cu^{2+} (equation or statement) (1) no. of moles $Cu^{2+} = 1.87 \times 10^{-3}$ in 25 cm ³ So no. of moles $Cu^{2+} = 1.87 \times 10^{-3} \times 20$ in 500 cm ³ (1) mass $Cu^{2+} = no.$ of moles in 500 cm ³ × 63.5 g in 500 cm ³ = 2.37	(3) 5 g (1)		
			So, %Cu = $\frac{2.375 \times 100}{9.5}$ = 25.0% (24.99) (1) 25.0% and some working scores (5) if reaction stoichiometry is incorrect then (max 4)	(5)		
		(iii)	Comment on relative magnitude of E^{\oplus} values (1) So, Cu^{2+} should not oxidise I ⁻ to I ₂ (under standard conditions) (relevance of insolubility of CuI (1)	(1) (3)		
				(Total 25 marks)		
4	Coloured ions / compounds (1) (<i>not metals</i>) complex ions / form complexes (1) paramagnetic ions / compounds (1) variable valency or oxidation state (1)					
	high melting or boiling temperature / high density (1)(max 3)not part filled d-shells or just 'paramagnetism'					
				(Total 3 marks)		

Student Book Unit 5 Test 1 Mark scheme (cont.)

5	a	(i) Deprotonation (1)	
		(ii) Ligand exchange / transfer / complex (ion) formation (1)	(2)
	b	$Cu(OH)_2$ (1) accept up to four water molecules in addition	(1)
	c	$[Cu(NH_3)_4]^{2+}$ (1) planar drawn (1); not tetrahedral or $[Cu(NH_3)_4(H_2O)_2]^{2+}$ (1) octahedral (1) or $[Cu(NH_3)_6]^{2+}$ (1) octahedral (1) <i>allow any of 1 to 6 NH₃ with 5 to 0 H₂O to balance</i>	(2)
			(Total 5 marks)
6	a	Not all d orbitals full / incomplete d orbitals (1)	(1)
	b	dative (covalent), co-ordinate (1) and covalent (1) if ionic or metallic given with other types of bonding (-1)	(2)

(Total 3 marks)