Student Book Unit 5 Test 1 Mark scheme (Chapters 2.1 to 2.2)

$1 \mathbf{a}$ (i) +2 to +2.5 (or 0.5) (1)
$\mathrm{I}_{2}+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-} \rightarrow \mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}+2 \mathrm{I}^{-}$(1)
allow $\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}+2 \mathrm{I}^{-} \rightleftharpoons \mathrm{I}_{2}+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}$
but not $\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}+2 \mathrm{I}^{-} \rightarrow \mathrm{I}_{2}+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}$
(ii) +2 to +6 (or 4) (1)
$4 \mathrm{XCl}_{2}+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}+5 \mathrm{H}_{2} \mathrm{O} \rightarrow 8 \mathrm{Cl}^{-}+2 \mathrm{SO}_{4}{ }^{2-}+10 \mathrm{H}$ species (1);
balanced (1)
(3)
allow $8 \mathrm{Cl}^{-}+2 \mathrm{SO}_{4}{ }^{2-}+10 \mathrm{H}^{+} \rightleftharpoons 4 \mathrm{Cl}_{2}+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}+5 \mathrm{H}_{2} \mathrm{O}$
but not $8 \mathrm{Cl}^{-}+2 \mathrm{SO}_{4}{ }^{2-}+10 \mathrm{H}^{+} \rightarrow 4 \mathrm{Cl}_{2}+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}+5 \mathrm{H}_{2} \mathrm{O}$
if the equations are given the wrong way round with an \rightarrow but the oxidation number changes are given correctly for these equations as -0.5 and -4 then the 2 oxidation state marks can be given
b The colour change is not sharp / not easy to see (1); no suitable indicator (1) or bromine is volatile / is lost from the system (1); therefore results are not accurate / reliable (1)

2 a Potential / e.m.f. / voltage / half-cell of electrode (1); relative to (standard) hydrogen electrode (1); solutions of unit concentration (1); and gases at 1 atm / standard temperature (1)
b Voltmeter requires two connections / measure potential difference (1); and so another electrode is introduced into system (1)
allow 'for redox has to have a source / sink of electrons'(1)
c (i) Reaction in which a given species / substance / molecule / ion is simultaneously / both oxidised and reduced (1)
not atom
(ii) $E_{\text {cell }}^{\ominus}$ for disproportionation is $+1.23 \mathrm{~V}-(+1.70 \mathrm{~V})=-0.47 \mathrm{~V}$ (1)
or equivalent in words (1)
(This is negative) so reaction does not occur (1)
second mark is consequential on the first statement

3 a (i) $\mathrm{Cu}+4 \mathrm{H}^{+}+2 \mathrm{NO}_{3}^{-} \rightarrow \mathrm{Cu}^{2+}+2 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$; species (1); balanced (1)
or similar reaction with Zn or Ni
balancing mark conditional on correct species
(ii) Redox (1)
b (i) $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} ;\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} ;\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ or $\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}$
3 correct (2); 2 correct (1); 1 correct (0)
(ii) $\mathrm{Cu}(\mathrm{OH})_{2}(1) ; \mathrm{Ni}(\mathrm{OH})_{2}(1)$
ignore any hydration
if $\mathrm{Zn}(\mathrm{OH})_{2}$ is included then (-1)
(iii) $\left[\mathrm{Zn}(\mathrm{OH})_{4}\right]^{2-}$ or $\left[\mathrm{Zn}(\mathrm{OH})_{3}\right]^{-}$or $\mathrm{ZnO}_{2}{ }^{2-}$ (1)
ignore any hydration in the first two, but the last must not include any hydration
not $\left[\mathrm{Zn}(\mathrm{OH})_{6}\right]^{4-}$

Student Book Unit 5 Test 1 Mark scheme (cont.)

c (i) e.g. $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{OH}^{-} \rightarrow \mathrm{Cu}(\mathrm{OH})_{2}+6 \mathrm{H}_{2} \mathrm{O}$; species (1); balanced (1)
balancing mark conditional on correct species
$\mathrm{H}_{2} \mathrm{Os}$ on right-hand side must add up to 6
(ii) deprotonation or acid-base (1)
(3)
not hydrolysis or precipitation
d NaOH to remove nitric acid (1); which would interfere with the redox reaction or would oxidise iodide ions or solution must be acidic to keep Cu^{2+} ions in solution (1)
Quality of language (1)
e (i) $2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{I}_{2} \rightarrow \mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}+2 \mathrm{NaI}$ (1)
or $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\frac{1}{2} I_{2}$ etc.
accept ionic equation
Add starch when solution pale yellow (1)
not towards the end point
If added too soon gives ppt. or insoluble complex (1)
(ii) No. of moles $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}=\frac{0.1 \times 18.7}{1000}$ (1)
relate to moles Cu^{2+} (equation or statement) (1)
no. of moles $\mathrm{Cu}^{2+}=1.87 \times 10^{-3}$ in $25 \mathrm{~cm}^{3}$
So no. of moles $\mathrm{Cu}^{2+}=1.87 \times 10^{-3} \times 20$ in $500 \mathrm{~cm}^{3}$ (1)
mass $\mathrm{Cu}^{2+}=$ no. of moles in $500 \mathrm{~cm}^{3} \times 63.5 \mathrm{~g}$ in $500 \mathrm{~cm}^{3}=2.375 \mathrm{~g}(1)$
So, $\% \mathrm{Cu}=\frac{2.375 \times 100}{9.5}=25.0 \%$ (24.99) (1)
25.0% and some working scores (5)
if reaction stoichiometry is incorrect then (max 4)
(iii) Comment on relative magnitude of E^{\ominus} values (1)

So, Cu^{2+} should not oxidise I^{-}to I_{2} (under standard conditions) (1) relevance of insolubility of CuI (1)

4 Coloured ions / compounds (1) (not metals) complex ions / form complexes (1) paramagnetic ions / compounds (1) variable valency or oxidation state (1) catalytic activity (1) high melting or boiling temperature / high density (1)
(max 3) not part filled d-shells or just 'paramagnetism'
(Total 3 marks)

Student Book Unit 5 Test 1 Mark scheme (cont.)

5 a (i) Deprotonation (1)
(ii) Ligand exchange / transfer / complex (ion) formation (1)
b $\mathrm{Cu}(\mathrm{OH})_{2} \mathbf{(1)}$
accept up to four water molecules in addition
c $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ (1) planar drawn (1); not tetrahedral or $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$ (1) octahedral (1)
or $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ (1) octahedral (1)
allow any of 1 to $6 \mathrm{NH}_{3}$ with 5 to $0 \mathrm{H}_{2} \mathrm{O}$ to balance

6 a Not all d orbitals full / incomplete d orbitals (1)
b dative (covalent), co-ordinate (1) and covalent (1)
(2)
if ionic or metallic given with other types of bonding (-1)
(Total 3 marks)

