Student Book Unit 5 Test 2 Mark scheme (Chapters 2.3 to 2.5)

1 a	Delocalised bonding in benzene (1) Benzene does not have three (localised) C=C bonds (1)	
	Less susceptible to addition (1)	(max 2)
b	(i) Concentrated acids (1); lower than 60 °C (1) (ii) $HNO_3 + 2H_2SO_4 \rightleftharpoons NO_2 + 2HSO_3^- + H_3O^+$ (1) or $HNO_3 + H_2SO_4 \rightleftharpoons H_2NO_3^+ + HSO_4^-$ or $HNO_3 + H_2SO_4 \rightleftharpoons NO_2^+ + HSO_4^- + H_2O$	(2)
	Sulfuric acid donates H^+ to nitric acid (1)	(2)
	(iii) (1) allow this mark also for H^+ at end	(2)
	$ \qquad \qquad$	
	(1) for plus charge and incomplete ring delocalisation	
	or equivalent using Kekulé forms – intermediate should have two doul	ble bonds only
	(iv) Addition destroys delocalisation substitution does not (1)	(1)
		(Total 9 marks)
2 0		
2 a	Fume cupboard (1); gloves (1) safety requirements must be specific to question	(2)
2 a b	Fume cupboard (1); gloves (1) safety requirements must be specific to question $C_6H_5NH + HCl \rightarrow C_6H_5NH_3^+Cl^-$ (1) must have correct charges ignore Cl^- if H^+ on left-hand side	(2) (1)
2 a b	 Fume cupboard (1); gloves (1) safety requirements must be specific to question C₆H₅NH + HCl → C₆H₅NH₃+Cl⁻ (1) must have correct charges ignore Cl⁻ if H⁺ on left-hand side (i) Too slow lower than 0 °C (1); product decomposes at higher than 	(2) (1)
2 a b	 Fume cupboard (1); gloves (1) safety requirements must be specific to question C₆H₅NH + HCl → C₆H₅NH₃+Cl⁻ (1) must have correct charges ignore Cl⁻ if H⁺ on left-hand side (i) Too slow lower than 0 °C (1); product decomposes at higher than (ii) Exothermic (1); have to keep temperature below 5 °C (1) 	(2) (1) 1.5°C (1) (4)
2 a b c d	Fume cupboard (1); gloves (1) safety requirements must be specific to question $C_6H_5NH + HCl \rightarrow C_6H_5NH_3^+Cl^-$ (1) must have correct charges ignore Cl^- if H^+ on left-hand side (i) Too slow lower than 0 °C (1); product decomposes at higher than (ii) Exothermic (1); have to keep temperature below 5 °C (1) $\swarrow N_2^+Cl^- + \swarrow N \longrightarrow N \longrightarrow + HCl$	(2) (1) (1) (4) (2) ignore HCl
2 a b c d	Fume cupboard (1); gloves (1) safety requirements must be specific to question $C_6H_5NH + HCl \rightarrow C_6H_5NH_3^+Cl^-$ (1) must have correct charges ignore Cl^- if H^+ on left-hand side (i) Too slow lower than 0 °C (1); product decomposes at higher than (ii) Exothermic (1); have to keep temperature below 5 °C (1) $\swarrow N_2^+Cl^- + \swarrow N = N - (1) + HCl$ reactants (1) products (1)	(2) (1) (4) (2)
2 a b c d	Fume cupboard (1); gloves (1) safety requirements must be specific to question $C_6H_5NH + HCl \rightarrow C_6H_5NH_3^+Cl^-$ (1) must have correct charges ignore Cl^- if H^+ on left-hand side (i) Too slow lower than 0 °C (1); product decomposes at higher than (ii) Exothermic (1); have to keep temperature below 5 °C (1) $\swarrow N_2^+Cl^- + \swarrow N \rightarrow N$	(2) (1) (1) (4) (2)
2 a b c d	Fume cupboard (1); gloves (1) safety requirements must be specific to question $C_6H_5NH + HCl \rightarrow C_6H_5NH_3^+Cl^-$ (1) must have correct charges ignore Cl^- if H^+ on left-hand side (i) Too slow lower than 0 °C (1); product decomposes at higher than (ii) Exothermic (1); have to keep temperature below 5 °C (1) $\swarrow N_2^+Cl^- + \swarrow N \rightarrow N$	(2) (1) (1) (4) (2) ignore HCl
2 a b c d	Fume cupboard (1); gloves (1) safety requirements must be specific to question $C_6H_5NH + HCl \rightarrow C_6H_5NH_3^+Cl^-$ (1) must have correct charges ignore Cl^- if H^+ on left-hand side (i) Too slow lower than 0 °C (1); product decomposes at higher than (ii) Exothermic (1); have to keep temperature below 5 °C (1) $\swarrow N_2^+Cl^- + \swarrow N \rightarrow N$	(2) (1) (1) (4) (2) ignore HCl

(ii) Fractional distillation (1); distil off methylbenzene and distil a sample of benzyl chloride / (chloromethyl) benzene at 179 °C (1) (5)

condition dependent on reagent

allow $C_7H_8 + Cl_2$ etc.

b HCl (1); room temperature (1) $CH_3CH_2CH_2NH_2 + HCl \rightarrow CH_3CH_2CH_2NH_3^+Cl^-$ (1) (3)

(Total 8 marks)

Student Book Unit 5 Test 2 Mark scheme (cont.)

(Total 7 marks)