

Mark Scheme January 2009

GCE

GCE Chemistry (8080/9080)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

Alternately, you can speak directly to a subject specialist at Edexcel on our dedicated Science telephone line: 0844 576 0037

January 2009
Publications Code UA020841
All the material in this publication is copyright
© Edexcel Ltd 2009

Contents

1.	6241/01 Mark Scheme	9
2.	6242/01 Mark Scheme	11
3.	6243/01A Mark Scheme	19
4.	6243/01A Materials	24
5	6243/02 Mark Scheme	25
6.	6244/01 Mark Scheme	33
7.	6245/01 Mark Scheme	49
8.	6246/01A Mark Scheme	61
9.	6246/01A Materials	66
10.	6246/02 Mark Scheme	67

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the mark scheme

- 1 / means that the responses are alternatives and either answer should receive full credit.
- 2 () means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
- 3 [] words inside square brackets are instructions or guidance for examiners.
- 4 Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is **essential** to the answer.
- 5 OWTTE means or words to that effect
- 6 ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- show clarity of expression
- construct and present coherent arguments
- demonstrate an effective use of grammar, punctuation and spelling.

Full marks will be awarded if the candidate has demonstrated the above abilities.

Questions where QWC is likely to be particularly important are indicated "QWC" in the mark scheme BUT this does not preclude others.

6241/01

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (a)	Bromine: (red-) brown and liquid (1)	red OR orange any combination of these colours	yellow on its own or in combination with these colours	2
	Iodine: grey OR black and solid (1) IGNORE shiny/silvery	any combination of these colours	purple on its own or in combination with these colours blue-black	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)(i)	1st mark lower / weaker and dispersion / London / van der Waals' / induced dipole forces (between HBr) (1) do not award this mark if the explanation is contradictory 2ND mark conditional on some type of intermolecular force fewer / smaller number electrons (in HBr/bromine/bromide (1)	reverse argument provided it clearly refers to HI	any answer with covalent bonding, ionic bonding or hydrogen bonding or any reference to breaking bonds scores (0) overall less/fewer dispersion etc forces just "weaker intermolecular forces" reference to mass or size fewer / smaller number electrons in bromide	2
			ion/Br ⁻	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)(ii)	$HBr + H_2O \rightarrow H_3O^+ + Br^-$		HBr → H ⁺ + Br ⁻	1
	must be an equation (1) Ignore state symbols			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)(iii)	Any number or range below 2 (1)	pH less than 4	Just 'acidic'	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (a)	Each mark is stand alone Area A: ionisation (1) Area B: acceleration (of positive ions by an electric potential) (1)	bombardment by (high energy) electrons to create positive ions - may be given further down	Just "vaporisation or atomisation" mention of negative ions, penalise once	4
	Area C: deflection (of positive ions by a magnetic field) (1) Area D: detection (of positive ions) (1)	bent	Just "identification or collection"	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)	10.8 = 10(1-x) + 11x (1) \therefore x = 0.8 = fraction of ¹¹ B (1) \therefore 80% ¹¹ B + 20% ¹⁰ B (1) OR 10.8 = 10x + 11(1-x) (1) \therefore x = 0.2 = fraction of ¹⁰ B (1) \therefore 20% ¹⁰ B + 80% ¹¹ B (1) OR 10.8 = $\frac{10x + 11(100 - x)}{100}$ (1) \therefore x = 20 = % of ¹⁰ B (1) \therefore 80% ¹¹ B (+ 20% ¹⁰ B) (1) OR 10.8 = $\frac{10(100 - x) + 11x}{100}$ (1) x = 80 = % of ¹¹ B (1) \therefore 20% ¹⁰ B (+80% ¹¹ B) (1) OR 10.8 = $\frac{10x + 11y}{100}$ (1) x + y = 100 (1) x + y = 100 (1) x = 80 ¹¹ B + 20% ¹⁰ B (1)	correct answers with some working (3) correct answers with no working (1) if candidates does not relate % with correct isotopes (max 2) If Br is used (max 2)		3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (a)(i)	1 st mark greater nuclear charge / more protons (in nucleus) (1) IGNORE effective		Any mention of ions scores (0) overall just "higher atomic number"	2
	2 nd mark attracting the same number of (occupied) electron shells / energy levels / orbits OR outer electrons are in the same shell / energy level / orbits OR		same number of orbitals	
	same amount of shielding of outer shell (of electrons) OR same amount of shielding by same inner shells (1)	No extra / little difference in shielding of outer shell (of electrons)	Just "same amount of shielding"	

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
3 (a)(ii)	1 st mark			3
	although greater nuclear		greater effective	
	charge / more protons (1)		nuclear charge	
	2 nd mark		nactear charge	
	electron in higher energy			
	level in K than Na			
	OR			
	more / extra shells (of			
	electrons) in K than Na			
	OR			
	electron in 4s in K and in 3s			
	in Na (1)			
	3 rd mark			
	outer electron experiences	effective nuclear		
	more shielding (1)	charge (approx) +1		
		OR		
		more shells between		
		outer electron and		
		nucleus		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)(i)	(1s ²)2s ² 2p ⁶ 3s ² 3p ¹ OR (1s ²)2s ² 2p _x ² 2p _y ² 2p _z ² 3s ² 3p ¹ (1)	1s ² repeated subscripts or superscripts capital or lower case letters		1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
3 (b)(ii)	Al ³⁺ (1)	2Al ³⁺		2
, , , ,				
	smaller	smaller as no	Just "same number of	
	and due to	electrons in outer	protons attracting fewer	
	loss of outer shell of	shell	electrons"	
	electrons / loss of all outer		lost 3 electrons	
	electrons / loss of 3 outer		loss of outer orbital /	
	electrons / loss of valence		sub shell	
	shell / loss of outer orbit (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (c)(i)	Ignore any reference to gaseous electrons or standard conditions		If incorrect equation after correct def -1 mark	3
	EITHER Enthalpy/heat/energy change to remove 1 electron (1) from each atom in one mole	required for change		
	(1) of gaseous atoms (1)	isolated atoms instead of gaseous	Just "gaseous element"	
	OR the enthalpy change per mole (1) for $X(g) \rightarrow X^{+}(g) + e^{(-)}$ OR any specific example (2)	$e^{(-)} + X(g) \rightarrow X^{+}(g) + 2e^{(-)}$		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (c)(ii)	large jump between 3 rd and 4 th ionisation energies (so 4 th electron is in an inner shell) (1)	sketch showing gradual increase for first 3 I.E. then large jump	large jump between 1 st and 2 nd I.E.	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(i)	** ** * * * * * * * * * * * * * * * *	All dots or all crosses Lone pair on B (1 max) If Cl used instead of F, max (1) if everything else correct	Ionic bonding (0)	2
	3 bonding pairs of electrons (1) 3 lone pairs on each F (1) ignore Fl	If Br used instead of B max (1) for 3 bonding pairs and 3 lone pairs on each F		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(ii)	F is more electronegative than B OR (B and F have) different electronegativities (1)	F is very electronegative so bond is B^{δ^+} - F^{δ^-} / pulls the electrons in the bond creating a dipole	Just "F is very electronegative" B polarises F	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(iii)	1st mark Shape drawn OR the BF ₃ molecule is trigonal planar (1) 2nd mark the dipoles/(individual) bond polarities /vectors cancel OR centres of positive and negative charges coincide (1)	BF ₃ is symmetrical	charges cancel (polar) bonds cancel	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)(i)	covalent (1) dative (covalent) / co- ordinate (1) if one or both correct and mention of intermolecular forces max (1)		Ionic (0) overall	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)(ii)	1st mark tetrahedral (1) 2nd mark stand alone 4 pairs of electrons (and no lone pairs) OR 4 bond pairs (and no lone		Contradictory bond angle eg 120 degrees just "4 bonds"	3
	pairs) (1) 3 rd mark stand alone which are as far apart as possible to minimise repulsion OR repel to give maximum separation (1)		Atoms repel Just "repel equally"	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (a)(i)	mol X = $0.6/24 = 0.025$ (1) molar mass X = $1.1/0.025 = 44$ (g mol ⁻¹) (1) conseq on mol X provided answer is ≥ 28 OR molar mass X = $\frac{1.1 \times 24}{0.6} = 44$ $\frac{1.1 \times 24}{0.6} = 44$ ignore units	Answer with no working (1)		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (a)(ii)	$X = CO_2$ / carbon dioxide (1)			1
	Conditional on 44 in (i)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (b)(i)	Check working and penalise cancelling errors mol Mg = $\frac{6}{24}$ = 0.25 (1)	Correct answer including unit but no working (1)		3
	mol HCl needed = $2x0.25$ (1) =0.5 conseq on mole Mg vol HCl = 0.5 = 0.25 dm ³ / 250 cm ³ (1) conseq on mole HCl unit essential	Final answer of 18.25g HCl from mass ratios (1) for use of 1:2 ratio	250 or 0.25 with no unit and no working score (0) incorrect unit, including dm ⁻³ and cm ⁻³	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (b)(ii)	Ignore sig figs EITHER molar mass $MgCl_2 = 24+(2x35.5) = 95(g \text{ mol}^{-1})$ (1) mass $MgCl_2 = 0.25x95$ $= 23.75 / 23.8 g$ (1) unit essential conseq on mol of Mg in (b)(i) and their molar mass OR 24 g Mg gives 95 g of $MgCl_2$ (1) mass $MgCl_2 = \frac{95 \times 6}{24}$ $= 23.75 / 23.8 g$ (1) Unit essential but do not penalise lack of units more than once	Correct answer with or without working (2)	rounding errors eg 23.7g	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6 (a)(i)	Yellow / orange (1) IGNORE words such as 'bright' or 'persistent' or 'lasting' or 'golden' or 'intense'	any combination of yellow and orange	any shade of red	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6 (a)(ii)	(heat from flame) electrons promoted / excited (to a higher energy level/shell) (1) fall back down / return (to ground state) (1)		Any answer based on absorption (0) overall Atoms/ions/particles excited (0) overall	3
	emit (energy as) light/photon/radiation (of a particular frequency) (1) 2 nd and 3 rd mark conditional on previous marks		Just "emit energy" Just "emit colour"	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6 (b)(i)	Answer must identify ions as sodium ions / Na ⁺ and chloride / Cl- /chlorine ion Answer must describe structure. Ignore any references to the bonding. 6 sodium ions around each chloride ion (1) and 6 chloride ions around each sodium ion (1) OR cubic structure/lattice or cube (1) with alternating sodium and chloride ions (1) OR two interlocking (facecentred) cubic lattices (1) of sodium and chloride ions (1) OR 6:6 (co-ordinate) lattice (1) of sodium and chloride ions (1)	a correctly labelled 3-dimensional diagram - minimum cube of 8 ions (2) If just labelled with + and - max (1) if unlabelled (0) a diagram showing just one layer of alternating Na ⁺ and Cl ⁻ (1) if diagram is drawn, ignore relative sizes of ions	Any mention of atoms loses the mark that relates to ions. Any reference to covalency/molecules loses both the marks Closely packed does not mean cubic.	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6 (b)(ii)	a lot of energy/heat is needed to overcome (1) strong forces between (oppositely charged) ions (1)	a lot of energy/heat is needed to break (1) strong ionic bonds /strong (ionic) lattice (1)	Any reference to atoms or molecules, covalent bonds, intermolecular forces, metallic bonds. (0) overall	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6 (c)(i)	$Li_2CO_3 \rightarrow Li_2O + CO_2$ (1) ignore state symbols	multiples	LiCO ₃	1

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
6 (c)(ii)	1 st mark Na ⁺ / sodium ion is larger (than Li ⁺ / lithium ion and has the same charge) OR Na ⁺ / sodium ion has lower charge density (than Li ⁺ / lithium ion) (1) 2 nd mark ion causes: less polarisation / distortion	reverse arguments for Li ⁺	sodium is larger than lithium/sodium has larger atomic radius/has a lower charge density atom causes polarisation OR	2
	of CO ₃ ²⁻ / carbonate (ion) OR ion causes: less weakening of (C-O) bonds in carbonate / anion (1) must be a comparison for both marks		ion causes less polarisation of CO ₃ weakens ionic bonds	

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
7 (a)	$MnO_4^- = (+)7 / VII$	7+		1
	$Mn^{2+} = (+)2 / II$	2+		
	both correct for (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
7 (b)	2:5 ratio on lhs in final equation OR multiply half equations by 2 and 5 (1) everything else correct including electrons cancelled conditional on 2:5 ratio (1) 2MnO ₄ ⁻ + 6H ⁺ + 5H ₂ O ₂ → 2Mn ²⁺ + 5O ₂ + 8H ₂ O	16H ⁺ on lhs and 10H ⁺ on rhs multiples or fractions		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
7 (c)	disproportionation (1) stand alone		"just" redox	3
	all correct oxidation numbers of oxygen in text or equation (1)		any change in oxidation number of hydrogen loses 2 nd and 3 rd marks	
	relating change in oxidation numbers of oxygen to oxidation and reduction (1)	may be described in words or numbers	just "explanation in terms of electron gain and loss"	

6242/01

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (a)(i)	Enthalpy change when 1 mol of ammonia (1)	"Heat/energy" instead of "enthalpy" "Released/given out" for change	"Required" instead of "change"	3
	is formed from (0.5 mol) nitrogen & (1.5 mol) hydrogen in their most stable states/gas (1)	from its elements "standard" instead of " most stable"		
	at 1 atmosphere/100 kPa/10 ⁵ Pa/1 Bar and "a specified temperature"/298 K/25°C (1)		Just "standard conditions"	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (a)(ii)	$\triangle H = 2 \times -46.2 = -92.4 \text{ (kJ mol}^{-1})$			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (a)(iii)	Bonds formed = (-)388 x 6 (= (-)2328) (kJ mol ⁻¹) (1)	kJ per mol(e)	Incorrect units (e.g. kJ)	3
	Bonds broken = 944 + 3 x 436 (= (+)2252) (kJ mol ⁻¹) (1)	(+)76 (kJ mol ⁻¹) (2)		
	△H = 2252 −2328 = −76 (kJ mol ⁻¹) (1) Third mark consequential. However, ensure that bonds formed are subtracted from bonds broken. Correct answer with some working (3) Correct answer with no working (2)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (a)(iv)	N—H Bond enthalpies are average values (1)		Just "bond energies are average values"	2
	Whereas $\triangle H_{\rm f}$ refers specifically to ammonia (1) $2^{\rm nd}$ mark can only be awarded if 1st mark scored.		Any reference to N≡N or H-H bond energies being average values negates first mark	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)(i)	350 - 550 °C (1) 100 - 350 atm (1) any temp/pressure within this range Iron (1) ignore any promoters		Iron(II) / iron(III)	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)(ii)	Factors: two of (high cost due to) high energy required (to generate the pressure) High pressure plant required (is expensive) More maintenance cost Each correct answer scores (1)			4
	Advantage and explanation: (High pressure) increases yield (of ammonia) (1)	Equilibrium shifts to the right	Reaction shifts to right. High pressure increases rate/ favours rhs/ products	
	Because 4 mol (of gas) on LHS give 2 mol on RHS (1) Both marks stand alone	Number of moles (of gas) decreases from reactants to product	Arguments based on volume/ pressure	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)(iii)	Two profiles with energy hump, one lower than the other.(1) Reaction profile at lower level labelled "with catalyst" OR Reaction profile at higher level labelled "no catalyst" Catalysed profile shows two steps (1)	Intermediate at an energy level between reactants and products	Answer with catalysed products at different energy to 2NH ₃ scores 0	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)(iv)	Vertical lines to the right of the hump marked E_a & E_{cat} with E_a at a higher energy than E_{cat} (1)			3
	Area under curve to the right of E represents number or fraction of molecules with sufficient energy to react (on collision)(1)	If candidate shades both areas under the curve this mark is scored. Ignore labelling		
	With catalyst more molecules/collisions have E greater than E _{cat} / enough energy to react (so rate increases) (1) OR a greater proportion/ more of the collisions are successful / lead to reaction (so rate increases) (1)		Just "more collisions" are successful	

Question Number	Correct	Answer				Acceptable Answers	Reject	Mark
2 (a)(i)						Calculation of %		2
		C	H	0		by mass from		
	%	64.9	13.5	21.6		formula:		
	moles	64.9÷12	13.5÷1	21.6÷16		% C =(100 x 4 x		
		= 5.41	= 13.5	= 1.35	(1)	12)÷74		
					(1)	=64.9 etc		
	Ratio	5.41÷1.35	13.5÷1.35	1.35÷1.35				

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (a)(ii)	CH ₃ H ₃ C-C-CH ₃ OH Or full structural formula Or (CH ₃) ₃ COH (1) W is (an alcohol that resists oxidation) tertiary (1) 2 nd mark is not standalone	A combination of structural and full structural formula		2

Question	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(i)	CH ₂ =CHCH ₂ CH ₃ OR H H H (1) CH ₃ CH=CHCH ₃ OR H H Cis or trans (1) CH ₂ =C(CH ₃) ₂ OR H H H H (1)	C ₂ H ₅ in place of CH ₂ CH ₃ A combination of structural and full structural formula Penalise missing hydrogen(s) once only Skeletal formulae		3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(ii)	(2-)methylpropene or formula or identified in (i) (1) Tertiary/branched alcohol gives branched alkene (1) OR alcohol and alkene must have the same carbon skeleton (1)	methyl propene methyl-propene second mark consequential on first, or near miss e.g. methylpropanene		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)(i)	H C H (1)	"CH ₃ " for a methyl group skeletal formulae		2
	H H H H (1) ignore bond angles			

Correct Answer	Acceptable Answers	Reject	Mark
Restricted rotation about C=C (1)	pi-bond for double bond Barrier to free		2
	rotation about C=C No rotation about		
	C=C Limited rotation		
Two different groups attached to both/ each C atoms (1) OR In the structure of the alkene b	"functional groups" for "groups" Two different groups attached to both ends of C=C		
	Restricted rotation about C=C (1) Two different groups attached to both/ each C atoms (1) OR In the structure of the alkene b X C=C	Restricted rotation about C=C (1) Two different groups attached to both/ each C atoms (1) OR In the structure of the alkene b	Restricted rotation about C=C (1) Two different groups attached to both/ each C atoms (1) OR In the structure of the alkene D

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (d)	Y (CH ₃) ₂ CHCH ₂ OH (1)	A combination of structural and full structural formula CO ₂ H	butan-1-ol	2
	Z (CH ₃) ₂ CHCOOH (1) OR full structural formulae	For 2 nd mark accept CH ₃ CH ₂ CH ₂ COOH cq on butan-1-ol		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (a)(i)	Species with an unpaired electron (1)	"Atom / molecule / particle" for "species"		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (a)(ii)	Ultraviolet / UV (light) (1)	Sunlight	Heat	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)(i)	Structure of propene (1) Structure of poly(propene) and continuation bonds (1)	-[CH(CH ₃)CH ₂] _n - on RHS At least 2 repeat units shown with continuation bonds	3 carbon straight chain in repeat unit or any repeat unit containing a double bond loses 2 nd and 3 rd marks	3
	Propene and poly(propene) balancing 'n's (1)			
	Ignore initiators and conditions			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)(ii)	π bond broken and $σ$ bond formed (1)	Double bond broken and (two) single bonds formed	More bonds formed than broken	3
	σ bond stronger than π (1)		Double bond weaker than single bond	
	Bond formation is exothermic so more energy given out than taken in OWTTE (1) Standalone	Reverse argument	Energetically favourable	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)(iii)	Reaction has high activation energy (1)	The reactants are kinetically stable (with respect to the activated complex/products) "because it is kinetically unfavourable"	The reaction is kinetically stable Just "Reaction slow." Initiator provides Ea	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(i)	Mol Al = 1.5x10 ⁶ ÷27 (= 5.56x10 ⁴ mol) (1)			3
	\therefore Mol Al ₂ O ₃ = mol Al/2 (= 2.78 x 10 ⁴) (1)			
	$\begin{array}{l} \therefore 2.78 \times 10^4 \times 102g \\ = 2.8(33) \times 10^6 g \ / \ 2.8(33) \\ \text{tonnes (1)} \\ \text{OR} \\ M_r \ (\text{Al}_2\text{O}_3) = 102 \ (1) \\ 108 \ \text{tonnes of Al formed from} \\ 204 \ \text{tonnes Al}_2\text{O}_3 \ (1) \\ 1.5 \ \text{t Al from } 1.5 \times 204 \div 108 = \\ 2.8(33) \ \text{tonnes (1)} \\ \end{array}$			
	2 nd and 3 rd marks cq			
	Answer in g or tonnes(t) but units essential			
	Accept 2 or more sf Correct answer with correct units and some working(3)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(ii)	2.8(33) x 10 ⁶ g x 100/54 = 5.25 x 10 ⁶ g (1) OR 2.8(33) x 100/54 = 5.25 tonnes (1) CQ on 4(a)(i) Correct answer with correct units with no working (1)1 Answer in g or tonnes(t) but units essential. But do not penalise lack of/incorrect units if already penalised in 4 (a)(i) Accept 2 or more sf . But do not penalise use of 1sf if already penalised in 4 (a)(i)	Range 5.18 - 5.25 (5.2-5.3)		1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
4 (b)(i)	(molten) cryolite / Na ₃ AlF ₆ (1) 850-1000 °C (1) any temperature within the range			2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)(ii)	Melting point of Al_2O_3 is too high (for the process to be economical) (1) OR Melting point of Al_2O_3 is (very) high and requires more energy to melt. OR Al_2O_3 requires too much energy to melt.		Melting point of $\mathrm{Al}_2\mathrm{O}_3$ is high	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)(iii)	Al ³⁺ + 3e ⁻ → Al Al ³⁺ on LHS (1) Rest of equation (1) no CQ If Al ³⁺ (aq) 1 max	e for e	Al ³⁺ → Al — 3e for second mark	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)(iv)	$20^{2^{-}} \rightarrow O_2 + 4e^{-}$ OR $20^{2^{-}} - 4e^{-} \rightarrow O_2$ Species $0^{2^{-}}$, O_2 , e^{-} on correct sides (1) balance (1) no CQ If $0^{2^{-}}$ (aq) 1 max unless already penalised in (iii)	e for e ⁻ multiples	Equations with OH —	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)(v)	Oxygen reacts with / oxidises the carbon / anode (so the anodes wear away) (1)	carbon monoxide		2
	$C + O_2 \rightarrow CO_2 (1)$	$2O_2$ - + C \rightarrow CO ₂ + 4e ⁻¹ 2C+O ₂ \rightarrow 2CO		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)(vi)	(Cost of generating) the electricity (1)			1

6243/01A

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
1 (a)	Observation Yellow (1)	Orange		2
	Inference Sodium/Na ⁺ (1)	_	Na	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)	Observations White precipitate (1) Dissolves/soluble/disappears/ clears/colourless solution (1) Inference Chloride / Cl ⁻ (1)		Clear solution Chlorine/Cl	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (c)	Observations Red to blue (1) (Blue-no change) Ignore smell Inferences Ammonia / NH ₃ (1) Ammonium / NH ₄ ⁺ (1) Both must follow red to blue Each is stand alone		"Turns blue"	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (d)	A = NaCl (1) B = NH ₄ Cl (1) Ignore correct charges on ions. If charge(s) wrong (0)	Other formulae eg KCl, NaBr if follow earlier inferences		2

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
2 (a)	Check subtractions and averaging arithmetic correcting if necessary.			12
	All volumes recorded to 0.05 cm ³ (1)			
	Allow one slip but withhold this mark if any readings are			
	in the wrong boxes.			
	Allow 0, 0.0, 0.00 as initial volume.			
	NOT 50 as initial volume.			
	All subtractions completed correctly (1)			
	[v top RHS of Table 1]			
	Mean titre			
	For correct averaging of chosen titres, correctly			
	subtracted or for choosing identical titres and for			
	recording the mean correct to 2 or 3 dp or to 0.05 cm ³			
	[unless already penalised in Table 1] (1) [by the mean in space or near the dotted line in			
	paragraph below]			
	Accuracy			
	If the candidate has made an arithmetical error in Table			
	1 or in averaging then the examiner must calculate a			
	new average.For an averaging error simply calculate a new value			
	using the candidate's chosen values			
	If a wrongly subtracted titre has been used in the			
	mean then choose any two identical titres or take a	1		
	average of the closest two.			
	Calculate the difference between the candidate's mean			
	titre and that of the examiner or supervisor.			
	Examiner's titre = 23.30 cm ³ . Write the "supervisors"			
	titre on the script SV = Record the difference as			
	d = on the script			
	Award marks for accuracy as follows			
		_		
	$\mathbf{d} = \begin{array}{c cccc} \pm 0.20 & \pm 0.30 & \pm 0.40 & \pm 0.60 & \pm 0.80 & \pm 1.00 \\ \hline \end{array}$	11		
	Mark 6 5 4 3 2 1]		
	Range			
	The range(r) is the difference between the outermost			
	titres used to calculate the mean. If the examiner has			
	corrected titres because of incorrect subtraction then			
	award the range on the corrected titres used by the examiner to calculate the mean.			
	r = 0.20 0.30 0.50 >0.50	1		
	Mark 3 2 1 0]		
	Evaminar to show the marks awarded for accuracy and			
	Examiner to show the marks awarded for accuracy and range as			
	d = value $r = value$			
	✓ 6 _{MAX} ✓ 3 _{MAX}			

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number	Correct Aliswei	Acceptable Allswers	Reject	Mark
2 (b)(i)	Titre × 0.1 1000 Answer to at least 3sf. If units given must be moles. Penalise incorrect units once only in (i) to (iv).	Allow one slip in SF in (i) to (iii) In (i) to (iv) allow loss of trailing zeros if correct arithmetically		1
Question	Correct Answer	Acceptable Answers	Reject	Mark
Number	Correct Answer	Acceptable Allswers	Reject	Mark
2 (b)(ii)	½ x answer to (i) Answer to at least 3sf. If units given must be moles.			1
Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(iii)	Answer to (ii) $\times \frac{1000}{25}$ = $\frac{25}{25}$ concentration (mol dm ⁻³) Answer to at least 3sf. If units given must be mol dm ⁻³ .			1
	· •			<u>.</u>
Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(iv)	Answer to (iii) x 1000 = 3.0 (1) Answer following correct method to 2 sf only (1) If units given must be mol dm ⁻³ .			2
		1		T
Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)(i)	Accuracy of measuring cylinder makes answer to more than 2sf invalid.	3.0cm³ is only 2 sf		1
Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)(ii)	Use pipette or burette to measure concentrated sulphuric acid.		weighing	1

Question Number	Correct	Answer				Acceptable Answers	Reject	Mark
_	Table 2 Both we spaces Table 2 Weighir Allow lo row. [* in both terms and trailing	eighings to at least langs corrected poss of training ottom RH mperatur (1) 1 dp onlightion corrected	ectly sub liling zero des recor y (1) [> ect (1). A only in find de calcul e expect	tracted (os-only in tracted fos-only in the fost of Table and row. If Table mass A ate (masted ΔT spected ΔT	RHS of [1] In final [2] Correct of SS of = 0.80 SS E x	Acceptable Answers	Reject	9
		between the two as d = on the script. Award marks for accuracy as follows.						
	d =	±0.50	±0.70	±1.00	±1.50			
	Mark	4	3	2	1			
	[⁴✔ bel	ow Table	3]					

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)(i)	Mass E 248 Units need not be given but penalise incorrect units.	Answer only		1
	[To at least two SF BUT penalise SF once only in Q3]			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)(ii)	50 x 4.18 x ΔT J OR 50 x 4.18 x ΔT kJ 1000 [To at least two SF: ignore sign]	Answer only with units		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)(iii)	Answer to (b)(ii) Answer to (b)(i) Answer to 2 SF only and in kJ mol ⁻¹ (1) Positive sign ONLY-award independently. (1)	Answer cq on (b)(i) and (ii)	Answers that do not follow heat method. moles	3

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
4	1 ✓ Clean oil off Li (before weighing) 2 ✓ Weigh lithium 3 ✓ Transfer lithium (in one piece) to water underneath measuring cylinder/add Li to water in suitable separate apparatus.			7
	 Read volume in measuring cylinder (after reaction ends). √Volume H₂ = Moles H₂ (1) 24.0/24,000 		Use of gas, syringe	
	units must match 6 ✓ Moles Li = 2 x Moles H₂ 7 ✓ Mass Li = Moles Li x 7.0 and % = calculated Mass Li x 100% Mass Li		Repeat experiment	

6243/01A - Materials

Apparatus and Materials

Apparatus

Each candidate will require:

- two boiling tubes in a rack;
- apparatus and materials for carrying out a flame test;
- Bunsen burner:
- test tube holder to fit boiling tube;
- one 10 cm³ measuring cylinder;
- a supply of dropping pipettes;
- spatula;
- 50.0 cm³ burette, in stand and clamp, with small funnel for filling;
- small beaker for draining burette;
- 25.0 cm³ pipette and safety filler;
- white tile:
- two 250 cm³ conical flasks:
- expanded polystyrene cup held securely in a 250 cm³ beaker;
- 14. access to a balance weighing to 0.01 g;
- one 50 cm³ or 100 cm³ measuring cylinder;
- a thermometer, range 0-50 °C (or similar), graduated in at least 0.5 °C intervals (or a thermometer that can be read to an accuracy of at least 0.5 °C).

Materials

Each candidate will require:

- (a)* 1.0 g of sodium chloride in a stoppered tube labelled A. The identity of this compound is not to be disclosed to candidates:
- (b)* 1.0 g of ammonium chloride in a stoppered tube labelled B. The identity of this compound is not to be disclosed to candidates;
- (c)* 200 cm³ of aqueous sodium hydroxide of concentration 0.100 mol dm⁻³ labelled Solution C;
- (d)* 200 cm³ of aqueous sulphuric acid of concentration 0.0480 mol dm⁻³ labelled Solution D. The concentration of this solution is not to be disclosed to candidates;
- (e)* between 7.0 and 7.3 g of powdered sodium thiosulphate, Na₂S₂O₃.5H₂O, in a stoppered specimen tube labelled E;
- (f) 10 cm³ of dilute sodium hydroxide; concentration approximately 0.5 mol dm⁻³;
- (g) 2 cm³ of dilute nitric acid; concentration approximately 2.0 mol dm⁻³;
- (h) 2 cm³ of aqueous silver nitrate; concentration approximately 0.05 mol dm⁻³;
- (i) 10 cm³ of dilute aqueous ammonia; concentration approximately 2.0 mol dm⁻³;
- methyl orange indicator (centres may use screened methyl orange if their candidates are more familiar with this indicator);
- (k) a supply of distilled water;
- red and blue litmus paper.

For home centres (ONLY), the chemicals identified with an asterisk (*) will be sent by a firm of manufacturing chemists.

6243/02

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (a)(i)	Gas evolved: hydrogen/H ₂ (1) hydrogen/H ⁺ /H ₃ O ⁺ /oxonium (ions) (1) (Precipitate): barium sulphate/BaSO ₄ /Ba ²⁺ SO ₄ ²⁻ (1)	Hydroxonium / hydronium	Н	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (a)(ii)	(Formula of liquid A): H_2SO_4		No CQ on 1 (a)(i)	1
	(1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)(i)	K ⁺ (1)		K /potassium	2
	I- (1)		l ₂ / iodine / iodine ion /iodide	

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
1 (b)(ii)	$Ag^{+}_{(aq)} + I^{-}_{(aq)} \rightarrow AgI_{(s)} (1)$	Equation with	If state symbols	1
		spectator ions on	incorrect or omitted	
	CQ on halide given in (b)(i)	both sides		

Question Number	Correct Answer	Acceptat	ole Answers		Reject	Mark
1 (b)(iii)	(Reagent): concentrated ammonia (solution) (1)	CQ on Cl	or Br in 1	b)(i)	Ammonia	2
	ignore aqueous	Halide	Reagent	Obs	No CQ on F ⁻ or any	
		Cl	Dil NH ₃	Dissolves	other anion	
	(Observation): Precipitate does not dissolve/insoluble	Br ⁻	conc NH ₃	Dissolves		
	(1)	Correct observation mark if 'ammonia' or 'ammonia gas' or dilute ammonia is the reagent (Observation): no change (1)				

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (c)	Any two from: • purple/violet/mauve gas or vapour • black/dark solid • steamy / misty / white fumes or fumes turn blue litmus red or fumes give white smoke with ammonia • bad egg smell • yellow solid • choking fumes or fumes turn (acidified) K ₂ Cr ₂ O ₇ green or blue	CQ on Cl ⁻ or Br ⁻ in 1(b)(i) • steamy / misty fumes or fumes turn blue litmus red or fumes give white smoke with ammonia CQ on Br ⁻ in 1(b)(i) • choking fumes or fumes turn (acidified) K ₂ Cr ₂ O ₇ green or blue • brown gas or fumes	No CQ on F ⁻ or any other anion Black vapour Goes black Effervescence / fizzing / bubbling	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (d)	Either: Use a fume cupboard as (toxic/poisonous) I ₂ or H ₂ S (evolved) CQ on anion in B If chloride: (toxic / irritant) fumes of HCl If bromide: (toxic / irritant) fumes of HBr or Br ₂ or SO ₂	HI or SO₂	Lab coat, eye protection, tie hair back	1
	Or: Wear gloves as (liquid) A/H ₂ SO ₄ corrosive Or: Add slowly as reaction is exothermic (1)	Acid corrosive	'Reactants' or 'products' corrosive	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2(a)(i)	All points accurately plotted (1)	1 plotting error		1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
2 (a)(ii)	Two straight best-fit lines		Best-fit line that	1
	(1)		includes T = 29.3 °C	

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
2 (a)(iii)	Suitable extrapolations to find		30.7 — 20.2 = 10.5 °C	2
	maximum temperature (1)		scores zero	
	Value from candidate's graph		Value not measured at	
	(1)		time = 4 minutes	
	[N.B. Expected value is 11.1 -		Value obtained from a	
	11.5 °C]		non-vertical line	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)	Ignore SF (except 1 SF). Penalise 1 SF once in 2(b) Ignore units unless incorrect Penalise incorrect units once in 2(b)			
2 (b)(i)	Heat change = 25.0 x 4.18 x their answer to (iii) = For 11.1 rise: 1160 (J) For 11.2 rise: 1170 (J) For 11.3 rise: 1181 (J) For 11.4 rise: 1191 (J) For 11.5 rise: 1202 (J) For 10.5 rise: 1097 (J)		26.25 x 4.18 x △T	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(ii)	1.25 = 0.0191 (mol) (1) 65.4			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(iii)	0.800 x <u>25.0</u> = 0.02(00) (mol)			1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
2 (b)(iv)	Copper(II) sulphate / CuSO ₄ as there are more moles of this / reaction is 1:1 <i>OR</i> there is 0.0009/0.001 more moles of copper(II) sulphate / CuSO ₄ than zinc (1)	CQ on calculation in (b) (ii) or (iii) but not on rounding 0.0191 to 0.02	CuSO ₄ to ensure that all the Zn reacts	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(v)	-(b)(i)/1000 = answer (1) 0.0191 (NB must use the smaller number of moles in 2(b) (iv) answer with negative sign and three sig figs (1) Expected answers: 11.1 rise:-60.7 (kJ mol ⁻¹) 11.2 rise: -61.3 (kJ mol ⁻¹) 11.3 rise: -61.8 (kJ mol ⁻¹) 11.4 rise: -62.4 (kJ mol ⁻¹) 11.5 rise: -62.9 (kJ mol ⁻¹) 10.5 rise: -57.4 (kJ mol ⁻¹)	Moles CQ on 2 (b)(iv) e.g. 0.002 moles CuSO ₄ Any calculated value to 3 SF and with negative sign scores second mark. Correct answer with no working scores full marks		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)	One of the following pairs: (Major source of error): heat is absorbed by metal / copper / thermometer / container (1) (Improvement): include its mass and specific heat capacity in calculation (1) OR (Major source of error): heat not spread out uniformly or temperature not uniform (1) (Improvement): stir the mixture or use a magnetic stirrer (1) OR (Major source of error): uncertainty in (maximum) temperature rise (1) (Improvement): measure temperature more often or use a computer to record temperatures (1) OR (Major source of error): not all the zinc transferred (1) (Improvement): weigh zinc container / weighing bottle after transfer (1)	(Major source of error): time lag in thermometer (1) (Improvement): use more responsive thermometer (1) First mark not scored where the major source of error is just the reverse of the improvement but second mark may be awarded e.g. (Major source of error): Mixture not stirred (0) (Improvement): stir the mixture (1) Correct improvement without source or error Burette does not score as a major source of error but allow pipette for the improvement mark (1)	More accurate / precise /digital thermometer use a lid (on the polystyrene cup) OR put (calorimeter) in a (glass) beaker Or lagging polystyrene cup thermometer or balance or burette insufficiently accurate (0) uncertainty in (maximum) heat rise c (CuSO ₄) is not 4.18 Jg ⁻¹ °C ⁻¹ density of solution is not 1 g cm ⁻³ Wash out zinc container	2

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
2 (d)	(+/-) <u>2 x 0.01</u> x 100%	(+/-) <u>0.01</u> x 100%		1
	1.25	1.25		
	= 1.6% (1)	= 0.8%		
		Correct answer with		
		no working		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (a)	Moles of cyclohexanol $\frac{10.0}{100}$ = 0.1(00) (mol) (1) theoretical yield = 0.1 x 82 = 8.2(0) (g) (1) percentage yield = $\frac{4.10}{8.20}$ x 100% = 50(.0) % (1) OR Mol cyclohexene = $\frac{4.1}{82}$ = 0.05 $\frac{82}{82}$ (1) percentage yield = 0.05 x 100 $\frac{0.10}{8.20}$ = 50(.0) % (1) correct answer with some working scores (3) correct answer alone scores (2)	Transposition of M _r values scores (2) for yield = 100 x 4.1 x 82 10 100 = 33.6 %	Values > 100 % score zero unless method steps correct 100 x 4.1 = 41 % (0)	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)(i)		Conc. H₂SO₄/sulphuric acid		1
	(1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)(ii)	Carbon/C (1)	graphite	Coke/charcoal/soot	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)(iii)	Either (The carbon must come from) cyclohexanol so using it up/a competing reaction Or Idea of a breakdown of reactant so that not all the reactant converted to desired product (1)	side reaction(s) carbon (in element or from carbon compound given in 3(b) (ii)) not available to form cyclohexene	Incomplete reaction Reduces temperature or heating efficiency.	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)(iv)	Eliminate incorrect steps and steps out of sequence and credit remaining correct steps		Recrystallisation scores zero.	4
	(Step 1): wash with sodium hydrogencarbonate / (1) (Step 2): wash with water (Step 3): dry with (anhydrous) calcium chloride	Sodium carbonate or calcium carbonate	NaOH or KOH	
	or (anhydrous) sodium sulphate (1) (Step 4): (re-)distil (1)	(anhydrous) MgSO₄		
		Fractional distillation		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (c)(i)	(Reagent): PCl ₅ /SOCl ₂ (1) (Result): steamy/misty fumes (1) OR (Reagent): Na / sodium (1) (Result): effervescence or positive test for H ₂ (1) OR (Reagent): carboxylic acid + conc sulphuric acid (followed by neutralisation) (1) (Result): fruity smell (1) second mark depends on first for all the above	White/cloudy fumes OR Gas which turns damp blue litmus paper red or forms white smoke with ammonia. (Reagent): acidified potassium dichromate((VI)) (1) (Result): orange to green / blue (1)	PCl ₅ (aq) or solution but allow observation mark White smoke KMnO ₄	2
	•			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (c)(ii)	Start & final colours needed (Reagent): Add bromine (water) / Br ₂ / bromine in a non-aqueous solvent/stated solvent such as hexane (1) (Result): brown/red-brown/orange solution decolourised/goes colourless (1) OR (Reagent): (Acidified or alkaline) potassium manganate(VII) / KMnO ₄ (Result): purple to colourless / decolourised / brown (ppt)	potassium permanganate Green if alkaline	White smoke KMnO₄ Yellow clear	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)	(From): colourless (To): (pale) pink (1)	(Pale) red		1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
4 (b)	Route 1 (put solid into flask) Dissolve in less than 500 cm ³ (distilled) water (1) In volumetric flask (1) Make up to the mark (1) mix/shake/invert (1)	Small volume etc of water Graduated/standard flask Make up to the line or to 500 cm ³ (1)	Flask/measuring cylinder	4
	Route 2 (solid dissolved first) Dissolve in not more than 400 cm³ (distilled) water (1) (Transfer to) volumetric flask (1) Wash the contents of the beaker into the flask and make up to the mark (1) mix/shake/invert (1)	Small volume etc of water Graduated/standard flask Make up to the line or to 500 cm ³ (1)	Flask/measuring cylinder Making up to 500cm³ by adding (500 — V) cm³ where V cm³ added to dissolve acid Making up to the mark before dissolving	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (c)	Ignore SF except 1 SF (penalise 1 SF once in 4 (c)) Ignore units unless incorrect. Penalise incorrect units once in 4 (c)			
4 (c)(i)	(0.100 x <u>25.0</u>)= 0.0025 (mol) 1000			1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
4 (c)(ii)	(0.5 x answer for (i)			1
	i.e. 0.5 x 0.0025)			
	= 0.00125 (mol) (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (c)(iii)	(20 x answer for (ii) i.e. 20 x 0.00125) = 0.025 (mol) (1)			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (c)(iv)	2.95 answer to (iii) = 2.95 = 118 (g mol ⁻¹) 0.025 (1)		Wrong units	1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
4 (d)	Subtract 90 from answer to	Correct answer with		2
	(c)(iv) (1)	some working or		
	Divide remainder by 14 (1)	logic		
	Correct answer n = 2	Answer alone (1)		

6244/01

If more than the correct number of answers is given penalise (-1) for each wrong answer. Answers can be A or a, etc.

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (a)(i)	A (1) E (1)			2
Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (a)(ii)	B (1) F (1)			2
Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (a)(iii)	A (1) C (1) D (1)			3
Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (a)(iv)	A (1) D (1)			2

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
1 (b)	Cis isomer (1) and trans isomer (1) of any of the following (trans isomer only shown): H CH2OH HO CH3 CH3 H CH2OH CH3 CH3 H CH2OH CH3 CH3 CH3 H CH4 CH4 CH4 CH4	Isomers based on cyclobutane or methylcyclopropane Molecules with bond angles 90° provided that the cis and trans structures are clearly different. Allow any other structure that is plausible. Allow CH ₃ — etc	Bonds shown as: CH ₂ OH— -CH ₃ O -HO. Penalise once only if <i>cis</i> and trans otherwise correct. Any <i>cis</i> and <i>trans</i> isomers of molecules other than C ₄ H ₈ O.	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (a)	Dilute: small amount of (ethanoic) acid in large volume of water/solvent (1) OR low concentration (1)		Low concentration of H ₃ O ⁺ or H ⁺ ions; less concentrated; water added to lower the concentration; high concentration of water; dissolved in excess water	2
	Weak: slightly ionised (1) OR low concentration of hydrogen ions / H ₃ O ⁺ / H ⁺ compared with the concentration of the acid (1)		very dilute; not fully ionised; partially ionised; incompletely ionised; dissolved in excess water; any argument based on pH	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(i)	$K_{a} = \frac{[H_{3}O^{+}][CH_{3}COO^{-}]}{[CH_{3}COOH]}$	$-CO_2^-$ for $-COO^-$ [H ⁺] for [H ₃ O ⁺]	any expression including [H ₂ O]; [HA] instead of [CH ₃ COOH].	1
	Ignore			
	$K_{a} = \frac{[H_{3}O^{+}]^{2}}{[CH_{3}COOH]}$			
	if it appears after the correct expression. If it is the only answer given it scores (0)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(ii)	If an incorrect expression for K_a is used the last three marks cannot score.			4
	Ignore significant figures unless they are rounded to one s.f. anywhere during the calculation: penalise once only.			
	Answer of 1.59 x 10 ⁻⁵ or with 1.592 x 10 ⁻⁵ and correct units of mol dm ⁻³ , and working, scores (4)			
	First mark pH= $-\log_{10}[H_3O^+]=3.2$ [H_3O^+]= 6.31×10^{-4} (1)	Use of [H ⁺] for [H ₃ O ⁺]		
	Next three marks Approximate calculation:			
	$K_a = \frac{[H_3O^+]^2}{0.025}$ (1)			
	$K_a = \frac{[H_3O^+]^2}{[CH_3COOH]}$	This can be credited if it appears in 2(b)(i) but is not given here.		
	$K_a = 1.59 \times 10^{-5}$ (1) mol dm ⁻³ (1)	1.592 x 10 ⁻⁵		
	The unit mark can be awarded if the unit is given in (b)(i) rather than here but must be mol dm ⁻³ .			
	The last 3 marks can be awarded CQ on an incorrect value of $[H_3O^+]$ provided that $[H_3O^+] > 10^{-7}$ mol dm ⁻³ , i.e. the solution must be acidic.			
	OR without approximation:			
	$K_{\rm a} = \frac{[{\rm H}_3{\rm O}^+]^2}{0.025 - 6.31 \times 10^{-4}}$ (1)			
	$K_a = 1.63 \times 10^{-5}$ (1) mol dm ⁻³ (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(iii)	First mark $[H_3O^+] = [CH_3COO^-] \text{ because}$ all H_3O^+ is from the acid or none/insignificant amount of H_3O^+ comes from water Second mark	Use of [H ⁺] for [H ₃ O ⁺]	Just $[H_3O^+]$ = $[CH_3COO^-]$ on its own	2
	In the denominator 6.31 x 10 ⁻⁴ << 0.025 (so can be ignored)			
	OR because degree of ionisation is very small <i>or</i> negligible then [CH ₃ COOH] = 0.025 (1)			
	If the answer to part (ii) uses 0.025 - 6.31 x 10 ⁻⁴ in the calculation score this 2 nd mark then ignore any other second assumption(s) suggested even if they are wrong.			
	Ignore any references to 'standard temperature'.			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)(i)	Ist mark The mixture is a buffer (1) 2 nd mark there are large amounts of /a large reservoir of the acid and its conjugate base/anion/salt (1) 3 rd mark EITHER CH ₃ COOH + OH → CH ₃ COOH = CH ₃ COOH CH ₃ COO ⁻ + H ² H ⁺ + OH ⁻ → H ₂ O and the equilibrium moves to RHS. 4 th mark and so the ratio of /the value of both [CH ₃ COOH] and [CH ₃ COO ⁻] hardly changes (1) Ignore any references to addition of H ₃ O ⁺	both equations in words	Not \rightleftharpoons for \rightarrow	4

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
2 (c)(ii)	First mark: Refer to diagram. Both ranges shown so that the one for MO is between about pH 2 and 5 (outside the vertical section), the one for phenolphthalein is between about 7 and 10.3, and is wholly within the vertical section (1) The extent of the ranges within the above values is unimportant provided there is a range and not just a point at the quoted values. Second mark Methyl orange is already yellow/orange or has already changed colour before the vertical section or before/not on the vertical section (1) Third mark Phenolphthalein changes from colourless to red/magenta/pink/purple (1)	before the endpoint	Methyl orange is the indicator for a strong acid and a weak base and ethanoic acid is a weak acid. 'clear' for 'colourless' Phenolphthalein is the indicator for a titration of a weak acid with a strong base.	4
	over a range which is within the vertical part of the graph (1)	between pH 7 and 10.3		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (d)	OR Equilibrium moves to LHS reactants (1)			2
	pH goes up/rises/increases (1) stand alone. If it is said that the		Just 'becomes more alkaline', 'becomes less acidic' on its own.	
	equilibrium moves to RHS then score (0) overall.			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (a)(i)	$K_{\rm p} = \frac{p({\rm NH_3})^2}{p({\rm N_2})p({\rm H_2})^3}$ (1)	$K_p = \frac{P_{NH3}^2}{P_{N2} P_{H2}^3}$ $p^2(NH_3)$ etc Ignore the position of brackets.	Any use of square brackets [] $p^2(NH_3)^2$	1

Question Co Number	orrect Answer	Acceptable Answers	Reject	Mark
p(p((1 (1 (1 un Ar ot All	$(NH_3) = \frac{0.2 \times 160}{3.8} = 8.42 \text{ atm}$ $\frac{3.8}{3.8}$ $(H_2) = \frac{0.9 \times 160}{3.8} = 114 \text{ atm}$ $\frac{3.8}{3.8}$ I) for dividing moles of gas by 3.8 I) for multiplying by 160 I) for all three values, and the nit given at least once. Inswers to 2 s.f. or more therwise max (2) Il three answers to 2 s.f. or more with the unit scores (3) whether working shown or not.	160 atm 19 720 atm 19 2160 atm 19 x 160 atm for the unit mark even if not stated again		3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (a)(iii)	$K_p = \frac{(8.42)^2}{(37.9)(114)^3}$ = 1.26 x 10 ⁻⁶ (atm ⁻²) (1) unit not necessary, but if given must be correct to score the mark.	1.26 x 10 ⁻⁶ (atm ⁻²) to 1.28 x 10 ⁻⁶ (atm ⁻²) depending on the number of s.f. used.		1
	CQ on values in (ii) and/or on an incorrect expression in (i).	CQ on K_p being the wrong way up in (i) leads to 781250 - 793650 (atm ²)		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)	The reaction is exothermic because K_p increases with decrease in temperature (1)		Any answer not based on values of K_p .	1
	Argument consequential on value of K_D from (a)(iii).		Just 'reaction is exothermic' alone	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (c)(i)	Increases (1)	faster/quicker	sooner	1
	Ignore any comment on yield			

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
3 (c)(ii)	Increases (1) Ignore any comment on yield	faster/quicker; rate of forward and back reactions		1
		increase equally .		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (d)	Any answer which states or implies that the value of <i>K</i> alters scores zero overall.			3
	First mark: K_p remains constant (1)	Maintain K _p		
	Second mark: Increase of partial pressure increases the value of the denominator or decreases the value of the fraction (and causes the equilibrium to move to RHS or increases amount of product) (1)		decreases value of K_p . Any answer based on le Chatelier, i.e. not referring to K_p , does not score the second mark	
	Third mark: Hydrogen partial pressure is raised to power 3 <i>or</i> is cubed but nitrogen is raised only to power 1 so the doubling has greater effect. (1)		nitrogen partial pressure is raised to no power; nitrogen partial pressure is third order	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)	2-amino-3-hydroxypropanoic acid (1)	3-hydroxy-2-amino- propanoic acid	Any answer based on the name of an alcohol; propionic instead of	1
		Allow 'ammino'	propanoic.	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)(i)	н НОСН,—С,—СН,ОН		CH ₂ OH— on left	1
	NH ₂			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)(ii)	н носн ₂ —с—соон NH ₃ С1	NH ₃ ⁺ or NH ₃ ⁺ Cl ⁻ or NH ₃ Cl	-ноос	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)(iii)			CH ₃ OCO- for CH ₃ COO-	1
	Н СН ₃ СООСН ₂ ——С—СООН NH ₂	CH ₃ COOCH ₂ —C—COOH	H HOCH ₂ ——C—COOH NHCOCH ₃	
	OR			
	О Н 			
	(1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (c)(i)	СН ₂ ОН СН ₂ ОН НООС NH ₂ Н ₂ N СООН		Incorrect compound scores (0) overall	2
	OR			
	сн ₂ он сн ₂ он			
	HOOC NH ₂ HOOC H			
	exchange of any two substituent groups (not only H and NH_2) is acceptable.			
	(1) for each isomer. The substituent groups can be in any order as long as the two isomers are mirror images.			
	Structures that are clearly 3D score; it is not essential to use wedges.			
	If the isomers are shown as mirror-imaged flat molecules (90° bond angles) then answer can score (1) only for both structures being correct.			

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
4 (c)(ii)	(Angle of) rotation of plane of (plane) polarised (monochromatic) light (1)		Twisting <i>or</i> bending <i>or</i> refracting <i>or</i> reflecting	1
	See answer to (c)(iii)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (c)(iii)	One would rotate (plane polarised light) to the left or anticlockwise and one to the right or clockwise. OR Rotate (plane polarised light) in opposite directions (1) This can also be allowed if answer appears in (c)(ii) Do not penalise twist/bend/refract/reflect if they have been penalised in (c)(ii). If rotation is mentioned here but not in (c)(ii) then the mark for (c)(ii) can be awarded there, unless (c)(ii) is wrong when it scores (0)	One rotates (plane polarised light) in positive direction, one in negative.		1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number		•		
4 (d)(i)	If structures have bonds to the atoms at each end score (0) Brackets are not essential if one repeat unit is shown.	Allow inverse throughout, e.g.		2
	$ \begin{array}{c c} & H & H & O \\ & & & \parallel & \parallel \\ & & & & \downarrow \\ & & & & & \downarrow \\ & & & & & & \downarrow \\ & & & & & & & \downarrow \\ & & & & & & & \downarrow \\ & & & & & & & \downarrow \\ & & & & & & & \downarrow \\ & & & & & & & \downarrow \\ & & & & & & & \downarrow \\ & & & & & & & \downarrow \\ & & & & & & & \downarrow \\ & & & & & & & \downarrow \\ & & & & & & & \downarrow \\ & & & & & & & \downarrow \\ & & & & & & & \downarrow \\ & & & & & & & \downarrow \\ & & & & & & & \downarrow \\ & & & & & & & \downarrow \\ & & & & & & & \downarrow \\ $	CH ₂ OH		
	More of the chain than one repeat unit is allowable provided that the repeat unit is clearly shown, e.g.:	etc.		
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	Above structure with no, or incorrect, brackets scores (1)			
	The C=O bond must be explicitly shown; if it is not but the structure is otherwise correct score (1)			
	Also for (1) mark:			
	C-N-C-HOCH ₂			
	OR			
	$ \begin{pmatrix} H & O & H \\ I & & \\ C - C - N \\ CH_2OH \end{pmatrix} $			

The methylene group can be shown as — CH ₂ — More of the chain than one repeat unit is allowable; the repeat unit need not be shown. If more units shown then: ester link (1) remainder of chain correct (1) if it is a whole number of repeat units The C=O bond must be explicitly shown; if it is not but the structure is otherwise correct score (1) Do not penalise here if already penalised in (d)(i).	Question Number	Correct Answer	Acceptable Answers	Reject	Mark
H O H C-C-O-C NH ₂ H	Number	H H O H NH2 OR (2) More of the chain than one repeat unit is allowable; the repeat unit need not be shown. If more units shown then: ester link (1) remainder of chain correct (1) if it is a whole number of repeat units The C=O bond must be explicitly shown; if it is not but the structure is otherwise correct score (1) Do not penalise here if already penalised in (d)(i). For 1 mark only:	The methylene group can be shown	ester link in a chain not	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (a)	The energy change when one mol of an ionic solid or ionic lattice (1)	enthalpy change, heat change, enthalpy <i>or</i> heat evolved	Energy <i>or</i> enthalpy <i>or</i> heat required	2
	is formed from ions in the gaseous state (1) OR The energy change when one mol of solid/lattice is formed from its ions in the gaseous state (2)	formed from its gaseous ions	formed from gaseous atoms; 1 mol of gaseous ions	
	Ignore any reference to standard state.			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (b)	Answer -2053 (kJ mol ⁻¹) with some working scores (3), with no working (2). Ignore wrong or no units.			3
	$(-859) = (+180) + 2(+122) + (+1468) + 2(-349) + $ ΔH_{latt} OR	Equivalent information using symbols for the energy changes, or words		
	$\Delta H_{\text{latt}} = (-859) - (+180) - 2(+122) - (+1468) - 2(-349)$			
	(2)			
	$\therefore \Delta H_{\text{latt}} = -2053 \text{ (kJ mol}^{-1}\text{) (1)}$			
	The following errors may arise:			
	Failure to multiply -349 by 2; answer of -1931 with some working scores (2), no working (1)			
	Failure to multiply +122 by 2; answer of -2402 with some working scores (2), no working (1)			
	Failure to multiply both the above by 2; answer of -2280 (1)			
	Any algebraic or transcription error, penalise (1) each time.			

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
5 (c)(i)	Theoretical model is based on 100% ionic bonding (1) If experimental Born Haber value is different <i>or</i> more exothermic/bigger this is due to some covalency <i>or</i> some covalent character in the bonding (1)			2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (c)(ii)	Any answer based on atoms scores (0) overall.			2
	First mark Be ²⁺ (ion) or beryllium ion is smaller (than the Ba ²⁺ (ion)) or Barium ion (1)		Be is smaller than Ba	
	OR			
	Cations get larger down the group (and have the same charge) (1)	Cation charge density decreases down the group.	Atoms get larger down the group	
	Second mark Be ²⁺ ion polarises/distorts the chloride ion more (than Ba ²⁺ does), leading to covalency/covalent character (1)		polarises the chlorine ion; polarises the chlorine; weakens the ionic bond; Be ²⁺ ion being polarised.	
	The opposite argument starting from barium ions (2)		Any argument based on electronegativity differences	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6(a)	First mark For showing reaction of PbO with H ₃ O ⁺ or any acid and with OH ⁻ or any alkali, equations correct or not (1)	H ⁺ for H₃O ⁺		3
	Second mark: any one of PbO + $2H^+ \rightarrow Pb^{2+} + H_2O$			
	$PbO + 2H_3O^+ \rightarrow Pb^{2+} + 2H_2O$			
	$PbO + 2HNO_3 \rightarrow Pb(NO_3)_2 + H_2O$			
	PbO + 2HCl → PbCl ₂ + H ₂ O	PbO + 4HCl \rightarrow PbCl ₄ ²⁻ + 2H ⁺ + H ₂ O		
	$PbO + H_2SO_4 \rightarrow PbSO_4 + H_2O $ (1)	+ 211 + 11 ₂ 0		
	Third mark: any one of PbO + $2OH^{-} \rightarrow PbO_{2}^{2-} + H_{2}O$	PbO + 2NaOH → $Na_2PbO_2 + H_2O$		
	PbO + 2OH + $H_2O \rightarrow [Pb(OH)_4]^{2}$ (1)	$Pb(OH)_4^{2^-}$ $PbO + 2NaOH + H_2O$ $\rightarrow Na_2Pb(OH)_4$		
	Ignore any state symbols Allow multiples			

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
6 (b)(i)	PbCl ₂ Ionic (1)	Electrovalent		2
	SnCl₄ Covalent (1)	Convalent	dative covalent	

Question	Correct Answer	Acceptable Answers	Reject	Mark
6 (b)(ii)	EITHER Lead (IV) is less stable than lead (II) so PbO ₂ is an oxidising agent <i>or</i> is reduced (1) Tin (IV) is more stable than tin (II) so SnO ₂ reacts as a base (1) OR Stability of (+4) state relative to (+2) state decreases down the group / from tin to lead (1) PbO ₂ oxidising agent, SnO ₂ a base. (1)	lead(II)		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6 (c)(i)	HCl shown as a product in both equations (1)	H ⁺ + Cl ⁻ for HCl throughout		3
	$PCl_3 + 3H_2O \rightarrow H_3PO_3 + 3HCl (1)$	P(OH) ₃ for H ₃ PO ₃		
	$PCl_5 + 4H_2O \rightarrow H_3PO_4 + 5HCl$			
	OR $PCl_5 + H_2O \rightarrow POCl_3 + 2HCl$ (1)			
	Allow multiples Ignore any state symbols			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6 (c)(ii)	First mark NaCl pH 7 and PCl₃ pH any value -1 ≤ pH < 4 (1) Credit pH values independently of any reasoning.		Neutral for pH 7; acidic	3
	Second mark NaCl dissolves to hydrated/aqueous ions			
	OR NaCl(s) $(+aq) \rightarrow Na^+ (aq) + Cl^- (aq)$ (1)			
	Third mark PCl ₃ hydrolyses (1)	reacts to produce acid(s)		

6245/01

Question Number	Correct Answer							Acceptable Answers Reject	Mark
1 (a)								Half arrows or just	2
					4s	vertical lines			
	Cu⁺	↑↓	↑↓	↑↓	↑↓	1↓			
	Cu ²⁺	↑↓	1	↑↓	↑↓	1			
	1 mark	for	each	row					

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)(i) QWC	ligands split <i>d</i> orbitals (1) This first mark is stand alone	If sequence in wrong order eg jump then absorb		3
	<pre>absorb light in (part) of visible region/all colours except blue(1) Stand Alone</pre>	Or any implication that this is an emission		
	causes electron to jump / be promoted to a new level (1)	spectra then only first mark (orbitals splitting) available		

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
1 (b)(ii)	No ligands to split (d) orbitals (1) Implication that all d orbitals the same	No complex ion /water ligand present	Full so cannot jump	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (c)(i)	X CuCl OR Cu ₂ Cl ₂ OR copper(I) chloride(1) allow cuprous chloride CuCl ₂ + Cu → 2CuCl or CuCl ₂ + Cu → Cu ₂ Cl ₂ (1)	Allow HCl on both sides		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (c)(ii)	Redox (1)	Reduction		1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
1 (c)(iii)	Cu(NH ₃) ₂ ⁺ (1)			1

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
1 (c)(iv)	The copper(I) ion has a full d (sub) shell/ d^{10} OR All d orbitals are full (1) (so d - d transitions impossible) Or No partly filled d		d orbitals not splitting	1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number	C (ALL) 7+		C (AILL) 7+	4
1 (c)(v)	Cu(NH ₃) ₄ ²⁺		Cu(NH ₃) ₆ ²⁺	1
	Or		And	
	$[Cu(NH_3)_4(H_2O)_2]^{2+}$ (1)		$Cu(NH_3)_2^+$	
	[] not essential			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (a)	Nucleophilic substitution (1)	Hydrolysis		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(i)	Expt 1 and 2/concentration of 1-brombutane constant Concentration of hydroxide trebled, rate x3 First order with respect to OH- (1) Expt 2 and 3/concentration of hydroxide constant. Concentration of 1-bromobutane x4, rate x4. First order with respect to 1-bromobutane.(1) If both orders given with no explanation 1 (out of 2) Rate = k[1-bromobutane] [hydroxide] (1) mark rate equation consequently.			3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(ii)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)(i)	The S _N 1 mechanism involves the production of a planar intermediate (1) which can be attacked from both sides(of the plane)(1) producing a racemic mixture/ equal amounts of both isomers/ both enantimorphs (1) last mark stand alone The S _N 2 mechanism Either involves attack from opposite side to Br Or would produce a single (inverted) optical isomer or single enantiomorph Or Attack from one side only Or Intermediate not planar (1)			4

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
2 (c)(ii)	The RDS is the slowest step (in a multi-step mechanism)	References		2
	(1)	to those		
		species in		
	Breaking of bond between carbon and bromine/formation	the rate		
	of carbocation / carbonium ion	equation		
	Or sketch to show this			
	Or equation (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (a)(i)	H H H H - C = C - CH ₃ H - Br (1) H H H - C - C - CH ₃ H - Br (1) H H H - C - C - CH ₃ H Br If charge on wrong carbon leading to 1-bromoproduct only the 1 st mark may be awarded.			3

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
3 (a)(ii)	Secondary intermediate/carbocation is the more stable (1) Or reverse argument Or drawings		Secondary bromopropane is more stable	1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number	EITHED only consider the res			3
3 (b)	EITHER only consider changes Bonds broken			3
	3 x C = C = 3 x 612 = (+)1836			
	$3 \times H - H = 3 \times 436 = (+)1308$			
	(+)3144			
	(1)			
	Bonds formed			
	$3 \times C - C = 3 \times 347 = (-)1041$			
	$6 \times C - H = 6 \times 413 = (-)2478$			
	(-)3519 (1)			
	Enthalpy change = 3144 +(-3519)			
	=-375 kJ mol ⁻¹ (1)			
	, ,			
	OR break and make all bonds			
	Bonds broken			
	3 x C - C = 3 x 347 = (+)1041			
	2 6 6 2 (42 ()402(
	$3 \times C = C = 3 \times 612 = (+)1836$			
	6 x C - H = 6 x 413 = (+)2478			
	3 x H - H = 3 x 436 = (+)1308			
	(+)6663 (1) Bonds formed	1373 is Worth 2 marks		
		since only one error.		
	$6 \times C - C = 6 \times 347 = (-)2082$	mark the third mark		
	12 x C - H = 12 x 413 = (-)4956	consequentially		
	(<u>/</u>			
	(-)7038 (1)			
	Enthalpy change = 6663 + (-7038)			
	=-375 (kJ mol ⁻¹			
)(1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (c)(i)	The unused p electron orbitals overlap (sidewayst to produce a π system that extends over the whole ring of carbon atoms) (1) Diagram (1)		Any suggestion that sigma bond being formed	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (c)(ii)	Addition would disrupt the delocalised π system (1) Substitution restores or retains the delocalised π system and this has greater (energetic) stability (1)	Allow reverse argument		2
Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (d)(i)	One in which the solute shows high solubility in hot but low in cold (1)			1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
3 (d)(ii)	Firsthot filtration/ second step (1)			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (d)(iii)	Soluble impurities will not crystallise out after cooling OR Soluble impurities remain in solution after cooling			1
	OR Cold solution is not saturated with the impurities (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (d)(iv)	To remove any impure solvent/solution on crystals (1) Must be idea of liquid not solid Allow remove any soluble impurities still in the solution			1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
3 (d)(v)	Minimum (volume) of hot solvent	"Bullets 1, 2 or 5"		1
	OR			
	wash with (ice-)cold solvent			
	OR			
	I st filtration so that crystals not removed.			
	(1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4	Diagram Stand alone Lozenge drawn (1) At least 2 horizontal and 2 vertical tie bars starting at 50/50 mixture (1) Explanation - stand alone Vapour richer in the more volatile component/ hexane (1) (Evaporates,)condenses and reboils(1) Pure hexane distilled off (1) If say heat at 69 °C and boil off hexane NO marks for explanation			5

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5(a)	$ \begin{array}{ c c c c c }\hline \text{Carbon} & \text{Hydrogen} & \text{Oxygen}\\\hline & \underline{81.82} & \underline{6.06} & \underline{12.12}\\\hline & 12 & 1 & 16 & (1)\\\hline = 6.818 & = 6.06 & = 0.7575\\\hline & \underline{6.818} & \underline{6.06} & \underline{0.7575}\\\hline & 0.7575 & 0.7575 & 0.7575\\\hline = 9 & = 8 & = 1 & (1)\\\hline \\ \text{Empirical formula} = C_9H_8O \\\hline \\ \end{array} $			3
	EF mass = 132 ∴ Molecular formula = C ₉ H ₈ O (1) Marking 1 mark for division by Ar 1 mark for showing EF = MF by use of 132 Note the third mark is for showing that the EF adds up to 132 OR % C = 9x12x100 = 81.82 (1) 132 % H = 8x1x100 = 6.06 (1) 132 % O = 16x100 = 12.12 132 OR by difference for which ever one is not			

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
5 (b)(i)	Carbonyl group			1
	OR Aldehyde or ketone (both needed)			
	OR C=O group (1)			

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
5 (b)(ii)	Aldehyde/CHO			1
	OR			
	"Not a ketone" if mark awarded in (i) (1)			

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
5 (b)(iii)	Must have (one) C=C (1)	Alkene		1
		Ignore unsaturated		
		group		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (c)(i)	C = C - C = 0 		Side chain EXCLUDED BY QUESTION	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (c)(ii)	Br H C - C - C = O H H H H H (1) for correct structure or with the bromine on carbon 2 (1) mark for indentification of chiral centre	If give side chain in 5(c)(ii) allow marks here consequentially		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (c)(iii)	Substitution in the benzene ring (1) Addition to side chain (1) OR Substitution in the benzene ring (1) Different positions around the ring/multiple substitution (1)	Reacts by substitution and addition without clarification 1 mark only	Nucleophilic substitiution	2

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
6 (a)	(dirty/grey) green ppt (1)	Any green		2
	(Then a dark) green solution (1) This mark does not depend on the colour of the ppt.			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6 (b)(i)	1 st mark Both directions of change of position of equilibrium given (1)			2
	2 nd mark Explanation involving H ⁺ in each case(1)			

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
6 (b)(ii)	Oxidation number of Cr in Cr ₂ O ₇ ²⁻ and CrO ₄ ²⁻		No change in	1
	is +6. (1)		ON of Cr	
	Actual oxidation number of Cr must be			
	stated			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6 (c)(i)	$2Cr^{3+} + Zn = 2Cr^{2+} + Zn^{2+}$ (1) Ignore state symbols	Multiples		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6 (c)(ii)	Cr^{2+} $Zn = Cr + Zn^{2+}$ (1) Ignore state symbols	Multiples		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6(c)(iii)	E° for Zn reducing Cr^{3+} going to Cr^{2+} is+ 0.35 (V) and E° for reducing Cr^{2+} to $Cr = -0.14(V)$ (1) Both required for 1 mark because E° for second reaction is negative / not feasible(1) Second mark consequential on figures in first part. Note If both E values correct final product is Cr^{2+} If E_1 and E_2 are both calculated as +ve - final product is Cr If E_1 and E_2 both calculated as negative final product is Cr^{3+}	Answers based on other use of the data eg. As cell diagrams and loss of electrons can score full marks Must be some reasoning for second mark		2

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number 6 (d)	Two possible routes ignore sig figs 1st mark Amount of dichromate in used in titration = 19.00 × 0.0136 (1) 1000 = 2.584 × 10 ⁻⁴ mol 2nd mark Mols of iron = 6 × 19.00 × 0.0136 (1) 1000 = 0.00155 mol (1.550 × 10 ⁻³) 3rd mark Total amount in 250 cm ³ = 10 × 6 × 19.00 × 0.0136 (1) 1000 = 0.0155 mol (1.55 × 10 ⁻²) OR Conc of Fe ²⁺ = 0.00155 (1) 0.025 = 0.0620 mol dm ⁻³ 4th mark Mass of iron(II) sulphate = 152 ×10x6 × 19.00 × 0.0136 1000 1000 11) = 2.357 g OR Mass of FeSO ₄ in 250 cm ³ = 0.0620 × 152 4 = 2.357 x 100 4,00 = 58.9% (1) allow 59	Alternative routes are possible for full marks Notes If use 56 (Fe) in place of 132 they get 21.7%.		5

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6 (e) QWC	Viable separation technique after reaction with heating with acidified potassium dichromate(VI) (1) e.g. If change in colour of dichromate from orange to green distil out product(as it is formed) 2 nd mark If no change in colour tertiary alcohol (1) 3 rd mark Either Test distillate of other two with Tollens' reagent If silver mirror aldehyde present and alcohol was primary (1) If no silver mirror ketone present and alcohol was secondary(1) OR Fehling's in place of Tollens' If answer just describes tests without chemical argument 1 out of the last two marks	If reflux to convert primary right through to acid and secondary to ketone. Allow dnp for ketone And a positive test for acid i.e not proof by elimination.		4

6246/01A

Question Number	Correct An	iswer					Acceptabl Answers	le Reject	Mark
1 (a)	Table 1								8
	Check sub correcting			averagii	ng arithr	netic			
	Allow one readings a Allow 0, 0. NOT 50 as All subtrac	All volumes recorded to 0.05 cm ³ or better. Allow one slip but withhold this mark if any readings are in the wrong boxes. Allow 0, 0.0, 0.00 as initial volume. NOT 50 as initial volume. All subtractions completed correctly (1) [* top RHS of Table 1]							
	For correct subtracted recording t [unless alm	Mean titre For correct averaging of chosen titres, correctly subtracted or for choosing identical titres and for recording the mean correct to 2 dp or to 0.05 cm ³ [unless already penalised in Table 1] (1) [by the mean in space or near the dotted line in paragraph below]					7		
	• If a wro	in average in average ongly ean the an a ean a the diffe	eraging average aging er the cand subtrace en chood verage dervisor's fference as the cand at of the rence as average as the cand are the cand are as the cand are the cand a	then the e. ror simp didate's ted titre use any to the clowalue or between e superv	examin ly calcul chosen has bee wo iden osest two the sci the ca	er must ate a new values n used in tical titres o. ript as s=			
	Award mai	rks fo	r accura	cy as fol	lows				
	d = ±0					>0.60			
	Mark	4	3	2	1	0			
	Mark xaminer to	titres has con then by th	used to prrected award to e exami	calculat titres be the rang ner to ca	e the me ecause c e on the alculate	ean. If the fincorrect corrected the mean.	t i		
	and range d = value ✓ 4 _{MAX}			r = valu ✓ 2 _{MAX}	e				

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)(i)	moles $S_2O_3^2$ in mean titre = mean titre x 0.100 (1) 1000 moles oxidising agent in 25.0 cm ³ = above 6 (1)			3
	conc ⁿ oxidising agent in B = above x 1000/25 (1) [Ignore SF except in final conc ⁿ] Answer must be to 3SF for 3 rd mark. If units given must be correct.			

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
1 (b)(ii)	Molar mass = $\frac{3.20}{}$			1
	answer to (i)			
	[To at least 2 SF]			
	IGNORE units.			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (c)(i)	Error = uncertainty x 100% reading OR explanation making this point.			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (c)(ii)	KI (already) in excess	oxidising agent is limiting		1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
2 (a)	Observations			2
	Any green for both C and D .		Any blue	
	(1)			
	Inference			
	d-block (1)	Transition (metals)		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(i)	Observations Green precipitate (Insoluble in excess ammonia) (1) Brown precipitate (1) Inferences Iron(II) / Fe ²⁺ (1) Iron(III) hydroxide / Fe(OH) ₃ (1)	[Fe(OH) ₃ (H ₂ O) ₃] / Fe ₂ O ₃		4

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number	Correct Allswei	Acceptable Allswers	Neject	Mark
2 (b)(ii)	Observations Purple (solution) (1) Colourless / yellow (solution) (1) Inference	Decolourised / discharged	disappeared	3
	Oxidation / redox(1)		reduction	
Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(iii)	Fe ²⁺ → Fe ³⁺ + e ⁽⁻⁾ Ignore state symbols			1
Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)(i)	Observations Green precipitate (1) Insoluble in excess NaOH (1) Inference Ni(OH) ₂ / nickel(II) hydroxide (1)	[Ni(OH) ₂ (H ₂ O) _{2/4}]		3
Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)(ii)	Observation White precipitate (1) Inference Barium sulphate / BaSO ₄ (1)		Green ppte $SO_4^{2^-} / sulphate$	2
	Dariam salphate / Daec4 (1)	<u> </u>	1 004 7 Sulphate	
Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (d)	C FeSO ₄ (1) D NiSO ₄ (1) Ignore water of crystallisation	Cr ₂ (SO ₄) ₂ cq		2
Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (a)	Observation sweet / fruity/ glue smell (1) Inferences ester (1) E is alcohol (1)	Allow ester smell as observation		3
Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)	Observation Green / blue (1) Inferences Primary or secondary alcohol (1)	Not tertiary alcohol Dichromate(VI)		3
	Alcohol ovidised / redov(1)	reduced	i .	i

Alcohol oxidised / redox(1)

reduced

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (c)	Observation Yellow precipitate (1) Inferences Iodoform / tri-iodomethane / CHI ₃ (1) CH ₃ —CH(OH) (1)	Methyl secondary alcohol or ethanol(both)	Ethanal and / or methyl ketone	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (d)	Compound 1 CH ₃ CH(OH)CH ₃ (1) Compound 2 CH ₃ CH(OH)CH ₂ CH ₃ (1) Alternatives: H OH H C C CH ₂ CH	Full structural formula for each-showing all atoms and bonds.(Penalise omission of hydrogens once only) Skeletal formula	C-HO bond	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (e)	Propan-2-ol 6:1:1 OR			1
	Butan-2-ol 1:1:2:3:3 Allow cq from (d)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4	1 ✓Make up equimolar solutions of transition metal ions.			7
	2 ✓Mix same volumes of solutions.			
	³ ✓Same temperature.			
	4 ✓Add KI or K ₂ S ₂ O ₈ last.			
	5 ✓Stir / mix and start timing as last solution added			
	6 ✓Stop timing when blue-black colour first appears.	$\frac{\text{rate Fe}^{2+}}{\text{rate Co}^{2+}} = \frac{\text{time Co}^{2+}}{\text{time Fe}^{2+}}$		
	7 ✓Shorter the time the more effective the catalyst			

Apparatus and Materials

Apparatus and Materials

Apparatus

Each candidate will require:

- 1. six test tubes and two boiling tubes in a test tube rack;
- one 10 cm³ and two 25 cm³ measuring cylinders;
- a supply of dropping pipettes;
- spatula;
- 50.0 cm³ burette, in stand and clamp, with small funnel for filling;
- small beaker for draining burette;
- 25.0 cm³ pipette and safety filler;
- white tile:
- two 250 cm³ conical flasks;
- one 100 cm³ beaker;
- 11. a supply of hot water (about 70 °C) and a 250 cm³ beaker for a water bath.

Materials

Each candidate will require:

- (a) 200 cm³ of aqueous sodium thiosulphate, Na₂S₂O₃, of concentration 0.100 mol dm⁻³ labelled Solution A;
- (b) 200 cm³ of aqueous potassium iodate, KIO₃, of concentration 0.0150 mol dm⁻³ labelled Solution B. The identity of this solution is not to be disclosed to candidates;
- (c) 1.0 g of hydrated iron(II) sulphate, FeSO₄.7H₂O, in a stoppered tube labelled C. The identity of this compound is not to be disclosed to candidates;
- (d) 1.0 g of hydrated nickel(II) sulphate, NiSO_{4.6}H₂O, in a stoppered tube labelled **D**. The identity of this compound is **not** to be disclosed to candidates;
- (e) 5 cm³ of propan-2-ol labelled E. The identity of this compound is not to be disclosed to candidates;
- (f) 100 cm³ of aqueous potassium iodide; concentration approximately 0.5 mol dm⁻³;
- (g) 100 cm³ of dilute sulphuric acid; concentration approximately 1.0 mol dm⁻³;
- (h) 2 cm³ of ethanoic acid in a stoppered test tube labelled ethanoic acid;
- (i) 10 cm³ of dilute aqueous ammonia; concentration approximately 2.0 mol dm⁻³;
- 15 cm³ of dilute sodium hydroxide; concentration approximately 0.5 mol dm⁻³;
- (k) 5 cm³ of dilute sulphuric acid; concentration approximately 1.0 mol dm⁻³;
- 5 cm³ of dilute hydrochloric acid; concentration approximately 2.0 mol dm⁻³;
- (m) 5 cm³ of aqueous barium chloride; concentration approximately 0.2 mol dm⁻³;
- (n) 5 cm³ of aqueous potassium manganate(VII); concentration approximately 0.02 mol dm⁻³;
- access to a bottle of concentrated sulphuric acid;
- (p) 60 cm³ of aqueous sodium carbonate; concentration approximately 1.0 mol dm⁻³;
- (q) 5 cm³ of aqueous potassium dichromate(VI); concentration approximately 0.20 mol dm⁻³;
- (r) 10 cm³ of iodine/potassium iodide solution made up by adding 2 g iodine to 6 g potassium iodide dissolved in 100 cm³ water and labelled aqueous iodine;
- (s) 20 cm³ of freshly prepared aqueous starch; concentration approximately 1%;
- (t) a supply of distilled water.

6246/02

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
1 (a)	Add starch when iodine colour almost disappeared / (pale) straw/pale yellow (1)			3
	Otherwise iodine-starch complex /black /blue-black solid precipitates /formed(1) Blue to colourless (1)	Allow grey ppt. since in the experiment the flask will contain the white solid Cul		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)	In the calculation ignore	Notes		7
	significant figures unless the			
	answers rounds to 1 during the calculation	Allow error carried		
	Calculation	forward.		
	Silver	Penalise an error only		
	Mass of AgCl = 0.244g	once in any part of the		
	Mass of Ag = 0.244×108 (1)	calculation if this is then		
	143.5 = 0.183(6) g	carried forward correctly to give a percentage.		
	= 0.165(0)g	to give a percentage.		
	$\% Ag = 0.1836 \times 100$			
	1.40			
	= 13.1(1)%(1)			
	Copper			
	Moles of thio used			
	$= 38.45 \times 0.1 $ (1)			
	$1000 = 3.845 \times 10^{-3}$			
	= 3.845 X 10			
	Moles of Cu ²⁺			
	$= 38.45 \times 0.1 (1)$			
	1000			
	= 3.845 x 10 ⁻³			
	Mass of Cu			
	$= 38.45 \times 0.1 \times 63.5$ (1)			
	1000			
	= 0.244(1)g			
	0/5			
	%Cu = <u>0.244 x 100</u> 1.40			
	= 17.4(4)% (1) Gold			
	Calculate percentage of gold by			
	difference			
	100 - (13.1+ 17.4) = 69.5% (1)			
	Consequential on % of silver and	Allow 69.4%		
	copper no matter what the			
	answers		l	1

Question Number	Correct Answer		Acceptable Answers	Reject	Mark
2 (a)(i)	M ²⁺ (g) + X ²⁻ (g)		Allow lattice energy with arrow the	$\Delta H_{solubility}$	3
	- Lattice energy	∑ onthalpies of	other way and positive		
		Σ enthalpies of hydration of ions			
	MX(s)		I think we allow it as the question is		
	$\Delta H_{\text{Solution}}$ $M^{2+}(\text{aq}) + X^{2-}(\text{aq})$		not direction specific		
	OR $M^{2+}(g) + X^{2-}(g)$				
	$-\Delta H_{ m latt}$ $\Delta H_{ m hyd}$	ΔH_{hyd}			
	$MX(s) \longrightarrow M^{2+}(aq) + X$ $\Delta H_{\text{solution}}$	² -			
	Species with state symbols charge must be +2/-2 (1) $\Delta H_{\text{Solution}}$ labelled on arrow showing so	olid to aqueous			
	ions (1) LE and enthalpies of hydration of ions				

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (a)(ii)	1 st mark EITHER Solubility is balance between lattice energy and hydration energy OR heat released on hydration must compensate for heat needed to break up lattice OR ΔH _{Solution} = -lattice energy + ∑hydration energies (1) This equation scores the mark and could be in quoted as part of the energy cycle 2 nd mark Both lattice energy and hydration energy decrease as cations get larger/ionic radius increases (1) 3 rd mark But hydration energy decrease is / both decrease but ΔH _{LE} is less significant (because of large anion size) (1) 4 th mark So enthalpy of solution becomes more endothermic down the group / less exothermic (hence less soluble)(1) Stand alone	lons (place of cations) Become less exothermic Reference to atoms not ions penalise once If no change in LE in second mark carry forward this error to third mark? This does not apply to hydration energy		4

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(i)	van der Waals / London / dispersion / induced dipole/instantaneous dipole - instantaneous dipole (1) Hydrogen bond(1)			2
	Ignore Dipole-dipole interactions but if give THREE answers one of which is wrong max 1			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
Number				
2 (b)(ii)	The acid /COOH group (1)			2
	Can form hydrogen bonds			
	with the water(1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(iii)	Energy released on formation of intermolecular forces (between aspirin and water) is less than the energy required to overcome the existing intermolecular forces OWTTE Or Large hydrophobic benzene ring /non-polar group leads to low solubility Or Hydrogen bonds formed fail to overcome the hydrophobic effect of the benzene ring (1)	"strength of forces" instead of "energy"	Any reference to breaking of molecule or bonds with molecules score zero	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(iv)	It is ionic and the ions can be hydrated providing enough energy to cause it to dissolve or Strong interaction between water and ions (1)			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)(i)	Methanol / CH₃OH (1)			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)(ii)	Ethanoyl chloride / CH ₃ COCl(1)	(CH ₃ CO) ₂ O or name	CH₃COCl solution	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)(iii)	Sodium hydroxide / NaOH OR sodium carbonate / Na ₂ CO ₃ OR sodium hydrogen carbonate/NaHCO ₃ (1)			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (d)	CH ₃ COOC ₆ H ₄ CO ₂ Na + HCl CH ₃ COOC ₆ H ₄ CO ₂ H + NaCl(1) Salicylic acid is a weaker acid / HCl is a stronger acid / Salicylate ions are a base(1)		If draw benzene ring it must be correct	2

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
2 (e)	0			2
	$\begin{bmatrix} CH_2 - O - C - R_1 \\ I \end{bmatrix}$			
	$CH - O - C - R_2 + 3CH_3OH \longrightarrow R_1CO_2CH_3 + R_2CO_2CH_3 + R_3CO_2CH_3 + CH_2OH$			
	СНОН			
	$CH_2 - O - C - R_3$			
	CH ₂ OH			
	1 mark for three esters + 1 mark for glycerol (stand alone)			
	I mark for three esters . I mark for giveeror (stand atone)			
1				

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (a)	H & C & & & N & O H & C & XO N & O H & C & XO N & O XO N & O N	Dots or crosses		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)(i)	HCN \Rightarrow H ⁺ + CN ⁻ $K_a = \frac{[H^+][CN^-]}{[HCN]} = \frac{[H^+]^2}{[HCN]}$ $\frac{[H^+]^2}{0.220} = 4.90 \times 10^{-10} \text{ (1)}$ $[H^+] = \sqrt{4.90} \times 10^{-10} \times 0.220$ $= 1.038 \times 10^{-5} \text{ (1)}$ pH = -log ₁₀ 1.038 x 10 ⁻⁵ $= 4.98(4) \text{ (1)} \text{ Allow}$ 5.00 Correct answer with no working (3)			3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)(ii)	100 % dissociation would give 0.220 mol dm ⁻³ Actual figure 1.038 x 10^{-5} mol dm ⁻³ % dissociation = $\frac{1.038 \times 10^{-5} \times 100(1)}{0.220}$ = 4.72×10^{-3} %(1) Answer must be the 3 sig.figs Cq on [H ⁺] (i)	If use 1.04 x 10 ⁻⁵ then get 4.73 x 10 ⁻³ %		2

Number Answers	Question	Correct Answer	Acceptable	Reject	Mark
	Number		Answers		
H CH ₃ - C = O (1) (1) H CH ₃ - C - O: (1) H CH ₃ - C - OH H CH ₃ - C - OH First two arrows (1) Intermediate (1) including charge Arrow to H of HCN/H Arrow can come from negative sign Arrow must go from bond to C of HCN not N Ignore δ+ and δ- unless wrong way round	3 (c)(i)	CH ₃ - C = 0 (1) CH ₃ - C - O: (1) CH ₃ - C - O: (1) H CH ₃ - C - O: (1) H CN First two arrows (1) Intermediate (1) including charge Arrow to H of HCN/H ⁺ (1) Arrow can come from negative sign Arrow must go from bond to C of HCN not N	H⁺ in place of		3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (c)(ii)	(A nucleophile is a) species that can donate a (lone) pair of electrons to form a covalent bond (1).		Just "species which attacks a postive / δ ⁺ site" A negative ion	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (c)(iii)	cyanide ion / CN ⁻ (1) HCN is a weak acid so CN ⁻ removed CN ⁻ reacts with H ⁺ CN ⁻ is a base so reacts with H ⁺ (1)	Equation and statement that equilibrium moves to LHS		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (d)	CH ₃ Cl + KCN → CH ₃ CN + KCl OR CH ₃ Cl + CN → CH ₃ CN + Cl (1) Ignore state symbols Nucleophilic substitution(1)			2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (e)	H H	Other routes can score but they must go via a cyanide (in question) Correct route via a Grignard reagent to the acid chloride scores Max 5 (it does not answer the question actually asked)		6
	or SOCl ₂ H H H ClCO ₂ C - C CO ₂ Cl H H H Marking 1 mark for each of the three intermediate compounds 5 reagents = (3) 3 reagents = (2) 2 reagents = (1) The reagent marks can only be awarded for parts of correct	Allow Na /ethanol Or Hydrogen/ Ni In place of LiAlH ₄		

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
4 (a)(i)	Value of K will decrease (1) This mark is stand alone			2
	∴[SO ₃] must decrease so that the fraction equals the new /lower K (1) Not stand alone			

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
4 (a)(ii)	No change in value of $K(1)$			3
QWC	This mark is stand alone			
	the fraction gets smaller /decreases (because there are more molecules on the left) (1)			
	Equilibrium moves to the right (so that the fraction equals the value of <i>K</i>) so concentration of SO ₃ increases (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(iii)	No change in value of <i>K</i> (or in the value of the fraction) No change in equilibrium yield of SO ₃ (1)	No change because catalysts only alter rate not yield OWTTE		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)	Average KE of molecules increases/molecules move faster/molecules have more energy / (1) a greater fraction of collisions will have energy			3
	greater than activation energy(1) Greater proportion of collisions are successful (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (c)(i)	Temperature must be high enough to give a reasonable rate(1) Too high and yield would drop dramatically(1) e.g. High temp gives a low yield but low temp will slow the rate and so a compromise is chosen"(2)			2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (c)(ii)	Higher pressure not necessary as conversion 425°C and 2 atm is very high / ~98% (1) Ignore costs			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (c)(iii)	Since reaction is exothermic the temperature will rise (1) Which would decrease the yield unless cooled (1)	Allow reference to equilibrium moving for second mark?		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (d)(i)	$2H_2SO_4 + HNO_3 \rightarrow H_3O^+ + NO_2^+ + 2HSO_4^-$	Allsweis		1
	OR			
	$H_2SO_4 + HNO_3 \rightarrow H_2O + NO_2^+ + HSO_4^-$ (1)			
	OR both of: $H_2SO_4 + HNO_3 \rightarrow H_2NO_3^+ + HSO_4^-$ then $H_2NO_3^+ \rightarrow H_2O + NO_2^+$			
	OR $H_2NO_3^+ + H_2SO_4 \rightarrow H_3O^+ + NO_2^+ + HSO_4^-$			

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
4 (d)(ii)	The sulphuric acid is a stronger acid and so protonates the nitric acid OR Nitric acid is a weaker acid and so is protonated (1)			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (d)(iii)	Mechanism CH ₃ NO ₂ (1) NO ₂ (1) (1)			3
	(1) (HSO ₄)			
	NO ₂			
	1 mark for arrow from ring on to N of the NO ₂ ⁺ 1 mark for intermediate with positive charge shown and delocalisation not extending over carbon attached to NO ₂ but covering the other carbons 1 mark for arrow from C - H bond into ring			

Correct Answer	Acceptable	Reject	Mark
	Answers		
NO_2 NO_2			1
OR drawn structure of any dinitromethyl benzene OR			
	NO_2 NO_2 NO_2 OR drawn structure of any dinitromethyl benzene	Answers (1) NO2 OR drawn structure of any dinitromethyl benzene OR	Answers (1) NO2 OR drawn structure of any dinitromethyl benzene OR

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publications@linneydirect.com</u> Order Code UA020841 January 2009

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH