Mark Scheme January 2009

GCE

GCE Chemistry (8080/9080)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.
Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844576 0025, our GCSE team on 0844576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http://www.edexcel.com/Aboutus/contact-us/

Alternately, you can speak directly to a subject specialist at Edexcel on our dedicated Science telephone line: 08445760037

Contents

1. 6241/01 Mark Scheme 9
2. 6242/01 Mark Scheme 11
3. 6243/01A Mark Scheme 19
4. 6243/01A Materials 24
5 6243/02 Mark Scheme 25
5. 6244/01 Mark Scheme 33
6. 6245/01 Mark Scheme 49
7. 6246/01A Mark Scheme 61
8. 6246/01A Materials 66
9. 6246/02 Mark Scheme 67

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the mark scheme

1 / means that the responses are alternatives and either answer should receive full credit.
2 () means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

3 [] words inside square brackets are instructions or guidance for examiners.
4 Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.

5 OWTTE means or words to that effect
$6 \mathrm{ecf} / \mathrm{TE} / \mathrm{cq}$ (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- show clarity of expression
- construct and present coherent arguments
- demonstrate an effective use of grammar, punctuation and spelling.

Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated "QWC" in the mark scheme BUT this does not preclude others.

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1 (a)}$	Bromine: (red-) brown and liquid (1)	red OR orange any combination of these colours	yellow on its own or in combination with these colours	$\mathbf{2}$
Iodine: grey OR black and solid (1) IGNORE shiny/silvery	any combination of these colours	purple on its own or in combination with these colours blue-black		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1 (b) (i)}$		any answer with covalent bonding, ionic bonding or hydrogen bonding or any reference to breaking bonds scores (0) overall	$\mathbf{2}$	
	1st mark lower / weaker and dispersion / London / van der Waals' / induced dipole forces (between HBr) (1) do not award this mark if the explanation is contradictory $\mathbf{2}^{\text {ND mark conditional on }}$ some type of intermolecular force fewer / smaller number electrons (in HBr/bromine/bromide (1)	refers to HI roverse argument	less/fewer dispersion etc forces	just "weaker intermolecular forces"

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1 (b) (i i)}$	$\mathrm{HBr}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Br}^{-}$ must be an equation (1) lgnore state symbols	$\mathrm{HBr} \rightarrow \mathrm{H}^{+}+\mathrm{Br}^{-}$	$\mathbf{1}$	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1}$ (b)(iii)	Any number or range below 2 (1)	pH less than 4	Just 'acidic'	$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (a)	Each mark is stand alone Area A: ionisation (1)	bombardment by (high energy) electrons to create positive ions - may be given further down	Just "vaporisation or atomisation"	mention of negative ions, penalise once
	Area B: acceleration (of positive ions by an electric potential) (1) Area C: deflection (of positive ions by a magnetic field) (1) Area D: detection (of positive ions) (1)	bent	Just "identification or collection"	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)	$\begin{aligned} & 10.8=10(1-x)+11 \mathrm{x}(1) \\ & \therefore \mathrm{x}=0.8=\text { fraction of }{ }^{11} \mathrm{~B}(1) \\ & \therefore 80 \%{ }^{11} \mathrm{~B}+20 \%{ }^{10} \mathrm{~B}(1) \end{aligned}$ OR $\begin{aligned} & 10.8=10 \mathrm{x}+11(1-\mathrm{x})(1) \\ & \therefore \mathrm{x}=0.2=\text { fraction of }{ }^{10} \mathrm{~B}(1) \\ & \therefore 20 \%{ }^{10} \mathrm{~B}+80 \%{ }^{11} \mathrm{~B}(1) \end{aligned}$ OR $\begin{aligned} & 10.8=\frac{10 \mathrm{x}+11(100-\mathrm{x})}{100}(1) \\ & \therefore \mathrm{x}=20=\% \text { of }{ }^{10} \mathrm{~B}(1) \\ & \therefore 80 \%{ }^{11} \mathrm{~B}\left(+20 \%{ }^{10} \mathrm{~B}\right)(1) \end{aligned}$ OR $\begin{aligned} & 10.8=\frac{10(100-x)+11 x}{100}(1) \\ & x=80=\% \text { of }{ }^{11} B(1) \\ & \therefore 20 \%{ }^{10} B\left(+80 \%{ }^{11} B\right)(1) \end{aligned}$ OR $\begin{aligned} & 10.8=\frac{10 x+11 y}{100}(1) \\ & x+y=100(1) \\ & \therefore 80 \%{ }^{11} B+20 \%{ }^{10} B(1) \end{aligned}$	correct answers with some working (3) correct answers with no working (1) if candidates does not relate \% with correct isotopes (max 2) If Br is used (max 2)		3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3 (a) (i)}$	(i) sreater nuclear charge / more protons (in nucleus) (1) IGNORE effective	Any mention of ions scores (0) overall just "higher atomic number"	$\mathbf{2}$	
	$\mathbf{2}^{\text {nd }}$ mark attracting the same number of (occupied) electron shells / energy levels / orbits OR outer electrons are in the same shell / energy level / orbits OR same amount of shielding of outer shell (of electrons) OR same amount of shielding by same inner shells (1)	No extra / little difference in shielding of outer shell (of electrons)	Just "same amount of shielding"	same number of orbitals

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3 ~ (a) (i i) ~}$	$\mathbf{1}^{\text {st }}$ mark although greater nuclear charge / more protons (1) $\mathbf{2}^{\text {nd }}$ mark electron in higher energy level in K than Na OR more / extra shells (of electrons) in K than Na OR electron in 4s in K and in 3s in Na (1) $\mathbf{3}^{\text {rd }}$ mark outer electron experiences more shielding (1)	greater effective nuclear charge	(1) effective nuclear charge (approx) +1 OR more shells between outer electron and nucleus	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3 ~ (b) (i) ~}$	$\left(1 s^{2}\right) 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{1}$ OR $\left(1 s^{2}\right) 2 s^{2} 2 p_{x}^{2} 2 p_{y}^{2} 2 p_{z}^{2} 3 s^{2} 3 p^{1}(1)$	$1 s^{2}$ repeated subscripts or superscripts capital or lower case letters		$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3 ~ (b) (i i) ~}$	Al^{3+} (1)	$2 \mathrm{Al}^{3+}$	smaller as no electrons in outer shell smaller and due to eless of outer shell of electrons / loss of all outer electrons / loss of 3 outer valence shell / loss of outer orbit (1)	Just "same number of protons attracting fewer electrons" lost 3 electrons loss of outer orbital / sub shell

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (c)(i)	Ignore any reference to gaseous electrons or standard conditions EITHER Enthalpy/heat/energy change to remove 1 electron (1) from each atom in one mole (1) of gaseous atoms (1) OR the enthalpy change per mole (1) for $X(g) \rightarrow X^{+}(g)+e^{(-)}$ OR any specific example (2)	required for change isolated atoms instead of gaseous $\begin{aligned} & \mathrm{e}^{(-)}+\mathrm{X}(\mathrm{~g}) \rightarrow \mathrm{X}^{+}(\mathrm{g})+ \\ & 2 \mathrm{e}^{(-)} \end{aligned}$	If incorrect equation after correct def -1 mark Just "gaseous element"	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (c)(ii)	large jump between 3 $\mathbf{4}^{\text {rd }}$ ionisation energies (so 4 elth (1)	sketch showing gradual increase for first 3 I.E. then large jump	large jump between 1 and 2	$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(i)	$\begin{gathered} x F_{x}^{x} \\ x F_{x}^{x} \\ x F_{x}^{x} B_{0}^{x} F_{x}^{x} \end{gathered}$ 3 bonding pairs of electrons (1) 3 lone pairs on each $F(1)$ ignore Fl	All dots or all crosses Lone pair on B (1 max) If Cl used instead of F, max (1) if everything else correct If Br used instead of B max (1) for 3 bonding pairs and 3 lone pairs on each F	Ionic bonding (0)	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(ii)	F is more electronegative than B OR (B and F have) different electronegativities (1)	F is very electronegative so bond is $B^{\delta+}-\mathrm{F}^{\delta \cdot} /$ pulls the electrons in the bond creating a dipole	Just "F is very electronegative"	B polarises F

Question Number	Correct Answer	Acceptable Answers	Reject	Mark		
4 (a)(iii)	$\mathbf{1}^{\text {st }}$ mark Shape drawn OR the BF_{3} molecule is trigonal planar (1)	BF_{3} is symmetrical				
$\mathbf{2}^{\text {nd }}$ mark						
the dipoles/(individual) bond						
polarities /vectors cancel						
OR						
centres of positive and						
negative charges coincide (1)					\quad	2
:---						
narges cancel						
(polar) bonds cancel						

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)(i)	covalent (1) dative (covalent) / co- ordinate (1) if one or both correct and mention of intermolecular forces max (1)		Ionic (0) overall	$\mathbf{2}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)(ii)	$1^{\text {st }}$ mark tetrahedral (1) $2^{\text {nd }}$ mark stand alone 4 pairs of electrons (and no lone pairs) OR 4 bond pairs (and no lone pairs) (1) $3^{\text {rd }}$ mark stand alone which are as far apart as possible to minimise repulsion OR repel to give maximum separation (1)		Contradictory bond angle eg 120 degrees just "4 bonds" Atoms repel Just "repel equally"	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (a)(i)	$\operatorname{mol~X}=0.6 / 24=0.025(1)$ molar mass $X=1.1 / 0.025=$ $44\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)(1)$ conseq on mol X provided answer is ≥ 28 OR molar mass $X=\frac{1.1 \times 24}{0.6}=44$ $\left(\mathrm{g} \mathrm{mol}^{-1}\right)(2)$ ignore units	Answer with no working (1)		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (a)(ii)	$\mathrm{X}=\mathrm{CO}_{2}$ / carbon dioxide (1) Conditional on 44 in (i)			$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (b)(i)	Check working and penalise cancelling errors $\mathrm{mol} \mathrm{Mg}=\frac{6}{24}=0.25$ mol HCl needed $=2 \times 0.25(1)$ $=0.5$ conseq on mole Mg vol $\mathrm{HCl}=\frac{0.5}{2}=\frac{0.25 \mathrm{dm}^{3} /}{250 \mathrm{~cm}^{3}(1)}$ conseq on mole HCl unit essential	Correct answer including unit but no working (1) Final answer of 18.25 g HCl from mass ratios (1) for use of 1:2 ratio	250 or 0.25 with no unit and no working score (0) incorrect unit, including dm^{-3} and cm^{-3}	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (b)(ii)	Ignore sig figs EITHER molar mass $\mathrm{MgCl}_{2}=$ $\begin{equation*} 24+(2 \times 35.5)=95\left(\mathrm{~g} \mathrm{~mol}^{-1}\right) \tag{1} \end{equation*}$ mass $\mathrm{MgCl}_{2}=0.25 \times 95$ $=23.75 / 23.8 \mathrm{~g}(1)$ unit essential conseq on mol of Mg in (b)(i) and their molar mass OR 24 g Mg gives 95 g of MgCl_{2} (1) $\text { mass } \begin{aligned} \mathrm{MgCl}_{2} & =\frac{95 \times 6}{24} \\ & =23.75 / 23.8 \mathrm{~g}(1) \end{aligned}$ Unit essential but do not penalise lack of units more than once	Correct answer with or without working (2)	rounding errors eg 23.7g	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{6 (a) (i)}$	Yellow / orange (1) IGNORE words such as 'bright' or 'persistent' or 'lasting' or 'golden' or 'intense'	any combination of yellow and orange	any shade of red	$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6 (a)(ii)	(heat from flame) electrons promoted / excited (to a higher energy level/shell) (1) fall back down / return (to ground state) (1) emit (energy as) light/photon/radiation (of a particular frequency) (1) $2^{\text {nd }}$ and 3' mark conditional on previous marks	Any answer based on absorption (0) overall Atoms/ions/particles excited (0) overall	3	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6 (b)(i)	Answer must identify ions as sodium ions / Na^{+}and chloride / Cl- /chlorine ion Answer must describe structure. Ignore any references to the bonding. 6 sodium ions around each chloride ion (1) and 6 chloride ions around each sodium ion (1) OR cubic structure/lattice or cube (1) with alternating sodium and chloride ions (1) OR two interlocking (facecentred) cubic lattices (1) of sodium and chloride ions (1) OR 6:6 (co-ordinate) lattice (1) of sodium and chloride ions (1)	a correctly labelled 3-dimensional diagram - minimum cube of 8 ions (2) If just labelled with + and - max (1) if unlabelled (0) a diagram showing just one layer of alternating Na^{+}and Cl^{-}(1) if diagram is drawn, ignore relative sizes of ions	Any mention of atoms loses the mark that relates to ions. Any reference to covalency/molecules loses both the marks Closely packed does not mean cubic.	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark		
$\mathbf{6}$ (b)(ii)	a lot of energy/heat is needed to overcome (1)	a lot of energy/heat is needed to break (1)	Any reference to atoms or molecules, covalent bonds, strong forces between (oppositely charged) ions (1)	strong ionic bonds /strong (ionic) lattice (1)		metallic bonds. (0) overall
:---						

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{6 (c) (i)}$	$\mathrm{Li}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{Li}_{2} \mathrm{O}+\mathrm{CO}_{2}(\mathbf{1})$ ignore state symbols	multiples	LiCO_{3}	$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6 (c)(ii)	$1^{\text {st }}$ mark Na^{+}/ sodium ion is larger (than Li^{+}/ lithium ion and has the same charge) OR Na^{+}/ sodium ion has lower charge density (than Li^{+}/ lithium ion) (1) $2^{\text {nd }}$ mark ion causes: less polarisation / distortion of $\mathrm{CO}_{3}{ }^{2-}$ / carbonate (ion) OR ion causes: less weakening of (C-O) bonds in carbonate / anion (1) must be a comparison for both marks	reverse arguments for Li^{+}	sodium is larger than lithium/sodium has larger atomic radius/has a lower charge density atom causes polarisation OR ion causes less polarisation of CO_{3} weakens ionic bonds	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$7(\mathrm{a})$	$\mathrm{MnO}_{4}{ }^{-}=(+) 7 / \mathrm{VII}$ $\mathrm{Mn}^{2+}=(+) 2 / \mathrm{II}$ both correct for (1)	$7+$		$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{7 (b)}$	$2: 5$ ratio on lhs in final equation OR multiply half equations by 2 and 5 (1) everything else correct including electrons cancelled conditional on 2:5 ratio (1) $2 \mathrm{MnO}_{4}^{-}+6 \mathrm{H}^{+}+5 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow$ $2 \mathrm{Mn}^{2+}+5 \mathrm{O}_{2}+8 \mathrm{H}_{2} \mathrm{O}$	multiples or fractions on rhs	$\mathbf{2}$	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
7 (c)	disproportionation (1) stand alone all correct oxidation numbers of oxygen in text or equation (1) relating change in oxidation numbers of oxygen to oxidation and reduction (1)	may be described in words or numbers	"just" redox any change in oxidation number of hydrogen loses $2^{\text {nd }}$ and $3^{\text {rd }}$ marks just "explanation in terms of electron gain and loss"	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1 (a) (i)}$	Enthalpy change when 1 mol of ammonia (1)	"Heat/energy" instead of "enthalpy" "Released/given out" for change	"Required" instead of "change"	$\mathbf{3}$
	is formed from (0.5 mol) nitrogen \& (1.5 mol) hydrogen in their most stable states/gas (1)	"standard" instead of " most stable"	"from its elements..	Just "standard conditions"
kPa/105Pa/1 Bar and "a specified temperature"/298 $\mathrm{K} / 25^{\circ} \mathrm{C}(1)$				

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1}(\mathrm{a})(\mathrm{ii})$	$\triangle H=2 \mathrm{x}-46.2=-92.4(\mathrm{~kJ}$ $\left.\mathrm{mol}^{-1}\right)$			$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (a)(iii)	Bonds formed $=(-) 388 \times 6$ (= (-)2328) (kJ mol ${ }^{-1}$) (1) Bonds broken $=944+3 \times 436$ $(=(+) 2252)\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)(1)$ $\triangle H=2252-2328=-76(\mathrm{~kJ}$ $\left.\mathrm{mol}^{-1}\right)(1)$ Third mark consequential. However, ensure that bonds formed are subtracted from bonds broken. Correct answer with some working (3) Correct answer with no working (2)	kJ per mol(e) $(+) 76\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)(2)$	Incorrect units (e.g. kJ)	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1 (a) (i v)}$	N—H Bond enthalpies are average values (1)	Just "bond energies are average values" Any reference to N $\equiv N$ or H-H bond energies being average values negates first mark	$\mathbf{2}$	
	Whereas $\triangle H_{f}$ refers specifically to ammonia (1) $\mathbf{2}^{\text {nd }}$ mark can only be awarded if 1st mark scored.			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)(i)	$\begin{aligned} & 350-550{ }^{\circ} \mathrm{C}(1) \\ & 100-350 \text { atm (1) } \\ & \text { any temp/pressure within } \\ & \text { this range } \\ & \text { Iron (1) } \\ & \text { ignore any promoters } \end{aligned}$		Iron(II) / iron(III)	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1 ~ (b) (i i) ~}$	Factors: two of (high cost due to) high energy required (to generate the pressure) High pressure plant required (is expensive) More maintenance cost Each correct answer scores (1)		$\mathbf{4}$	
	Advantage and explanation: (High pressure) increases yield (of ammonia) (1)	Equilibrium shifts to the right	Reaction shifts to right. High pressure increases rate/ favours rhs/ products	
Because 4 mol (of gas) on LHS give 2 mol on RHS (1) Both marks stand alone	Number of moles (of gas) decreases from reactants to product	Arguments based on volume/ pressure		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1}$ (b)(iii)	Two profiles with energy hump, one lower than the other.(1) Reaction profile at lower level labelled "with catalyst" OR Reaction profile at higher level labelled "no catalyst" Catalysed profile shows two steps (1)	Answer with catalysed products at different energy to $2 \mathrm{NH}_{3}$ scores 0 Intermediate at an energy level between reactants and products	$\mathbf{3}$	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)(iv)	Vertical lines to the right of the hump marked $E_{a} \& E_{c a t}$ with E_{a} at a higher energy than $E_{\text {cat }}$ (1) Area under curve to the right of E represents number or fraction of molecules with sufficient energy to react (on collision)(1) With catalyst more molecules/collisions have E greater than $\mathrm{E}_{\text {cat }}$ / enough energy to react (so rate increases) (1) OR a greater proportion/ more of the collisions are successful / lead to reaction (so rate increases) (1)	If candidate shades both areas under the curve this mark is scored. Ignore labelling	Just "more collisions" are successful	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (a)(ii)	 Or full structural formula Or $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$ (1) W is (an alcohol that resists oxidation) tertiary (1) $2^{\text {nd }}$ mark is not standalone	A combination of structural and full structural formula		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(i)	$\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}$ OR $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{3}$ OR cis or trans $\begin{equation*} \mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \tag{1} \end{equation*}$ OR	$\mathrm{C}_{2} \mathrm{H}_{5}$ in place of $\mathrm{CH}_{2} \mathrm{CH}_{3}$ A combination of structural and full structural formula Penalise missing hydrogen(s) once only Skeletal formulae		3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(ii)	(2-)methylpropene or formula or identified in (i) (1)	methyl propene methyl-propene		$\mathbf{2}$
	Tertiary/branched alcohol gives branched alkene (1) OR alcohol and alkene must have the same carbon skeleton (1)	second mark consequential on first, or near miss e.g. methylpropanene		

| Question
 Number | Correct Answer | Acceptable Answers | Reject | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2 (c)(i) | | "CH" for a methyl | | |
| group | | | | |

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)(ii)	Restricted rotation about $C=C$ Two different groups attached to both/ each C atoms (1) OR In the structure of the alkene $a \neq b$ AND $x \neq y$	pi-bond for double bond Barrier to free rotation about $\mathrm{C}=\mathrm{C}$ No rotation about $\mathrm{C}=\mathrm{C}$ Limited rotation "functional groups" for "groups" Two different groups attached to both ends of $C=C$		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (d)	Y $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{OH}(1)$	A combination of structural and full structural formula $\mathrm{CO}_{2} \mathrm{H}$ For 2nd mark accept $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH} \mathrm{cq}$ on butan-1-ol	butan-1-ol	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (a)(i)	Species with an unpaired electron (1)	"Atom / molecule / particle" for "species"		$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (a)(ii)	Ultraviolet / UV (light) (1)	Sunlight	Heat	$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)(i)	Structure of propene (1) Structure of poly(propene) and continuation bonds (1) Propene and poly(propene) balancing ' n 's (1) Ignore initiators and conditions	$-\left[\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}\right]_{n^{-}}$ on RHS At least 2 repeat units shown with continuation bonds	3 carbon straight chain in repeat unit or any repeat unit containing a double bond loses $2^{\text {nd }}$ and $3^{\text {rd }}$ marks	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3 ~ (b) (i i) ~}$	m bond broken and σ bond formed (1)	Double bond broken and (two) single bonds formed	More bonds formed than broken	$\mathbf{3}$
	Bond formation is exothermic so more energy given out than taken in OWTTE (1) Standalone	Reverse argument	Double bond weaker than single bond	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)(iii)	Reaction has high activation energy (1)	The reactants are kinetically stable (with respect to the activated complex/products) "because it is kinetically unfavourable"	The reaction is kinetically stable Just "Reaction slow." Initiator provides Ea	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(i)	$\begin{aligned} & \begin{array}{l} \mathrm{Mol} \mathrm{Al}=1.5 \times 10^{6} \div 27 \\ \left(=5.56 \times 10^{4} \mathrm{~mol}\right)(1) \end{array} \\ & \therefore \mathrm{Mol} \mathrm{Al}_{2} \mathrm{O}_{3}=\mathrm{mol} \mathrm{Al} / 2(=2.78 \\ & \left.\times 10^{4}\right)(1) \\ & \therefore 2.78 \times 10^{4} \times 102 \mathrm{~g} \\ & =2.8(33) \times 10^{6} \mathrm{~g} / 2.8(33) \\ & \text { tonnes }(1) \\ & \mathrm{OR} \\ & \mathrm{M}_{\mathrm{r}}\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)=102(1) \\ & 108 \text { tonnes of } \mathrm{Al} \text { formed from } \\ & 204 \text { tonnes } \mathrm{Al}_{2} \mathrm{O}_{3}(1) \\ & 1.5 \mathrm{t} \mathrm{Al} \text { from } 1.5 \times 204 \div 108= \\ & 2.8(33) \text { tonnes }(1) \\ & 2^{\text {nd }} \text { and } 3^{\text {rd }} \text { marks } \mathrm{cq} \end{aligned}$ Answer in g or tonnes(t) but units essential Accept 2 or more sf Correct answer with correct			3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(ii)	$2.8(33) \times 10^{6} \mathrm{~g} \times 100 / 54=5.25$ $\mathrm{x} 10^{6} \mathrm{~g}(1)$ OR $2.8(33) \times 100 / 54=5.25$ tonnes (1) CQ on 4(a)(i) Correct answer with correct units with no working (1)1	Range 5.18-5.25 $(5.2-5.3)$		1
Answer in g or tonnes(t) but units essential. But do not penalise lack of/incorrect units if already penalised in 4 (a)(i) Accept 2 or more sf. But do not penalise use of 1sf if already penalised in 4 (a)(i)				

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{4 (b) (i)}$	(molten) cryolite $/ \mathrm{Na}_{3} \mathrm{AlF}_{6}$ (1) $850-1000^{\circ} \mathrm{C} \mathrm{(1)} \mathrm{any}$ temperature within the range			$\mathbf{2}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{4}$ (b)(ii)	Melting point of $\mathrm{Al}_{2} \mathrm{O}_{3}$ is too high (for the process to be economical) (1) OR Melting point of $\mathrm{Al}_{2} \mathrm{O}_{3}$ is (very) high and requires more energy to melt. OR $\mathrm{Al}_{2} \mathrm{O}_{3}$ requires too much energy to melt.	Melting point of $\mathrm{Al}_{2} \mathrm{O}_{3}$ is high	$\mathbf{1}$	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)(iii)	$\mathrm{Al}^{3+}+3 \mathrm{e}^{-} \rightarrow \mathrm{Al}$ Al^{3+} on $\mathrm{LHS}(1)$ $R_{\text {Rest of equation (1) no CQ }}^{\text {If } \mathrm{Al}^{3+}(\mathrm{aq}) 1 \text { max }}$	e for e^{-}	$\mathrm{Al}^{3+} \rightarrow \mathrm{Al}-3 \mathrm{e} \mathrm{for}$ second mark	$\mathbf{2}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)(iv)	$2 \mathrm{O}^{2-} \rightarrow \mathrm{O}_{2}+4 \mathrm{e}^{-}$ OR $2 \mathrm{O}^{2-}-4 \mathrm{e}^{-} \rightarrow \mathrm{O}_{2}$ Species $\mathrm{O}^{2-}, \mathrm{O}_{2}, \mathrm{e}^{-}$on correct sides (1) balance (1) no CQ If $\mathrm{O}^{2-}(\mathrm{aq}) 1$ max unless already penalised in (iii)	e for e multiples	Equations with $\mathrm{OH}-$	$\mathbf{2}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)(v)	Oxygen reacts with / oxidises the carbon / anode (so the anodes wear away) (1)	\ldots. carbon monoxide....		$\mathbf{2}$
	$\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}(1)$	$2 \mathrm{O}_{2}-+\mathrm{C} \rightarrow \mathrm{CO}_{2}+4 \mathrm{e}^{-}$ $2 \mathrm{C}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}$		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)(vi)	(Cost of generating) the electricity (1)			$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1 (a)}$	Observation InferenceYellow (1) Sodium $/ \mathrm{Na}^{+}(1)$	Orange	Na	$\mathbf{2}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1}$ (b)	Observations White precipitate (1) Dissolves/soluble/disappears/ clears/colourless solution (1) Inference Chloride / Cl (1)		Clear solution	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1}$ (c)	Observations Red to blue (1) (Blue-no change) Ignore smell Inferences Ammonia $/ \mathrm{NH}_{3}(1)$ Ammonium $/ \mathrm{NH}_{4}+(1)$ Both must follow red to blue Each is stand alone		"Turns blue"	$\mathbf{3}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1 (d)}$	$\mathbf{A}=\mathrm{NaCl}(1)$ $\mathbf{B}=\mathrm{NH}_{4} \mathrm{Cl}(1)$ Ignore correct charges on ions. If charge(s) wrong (0)	Other formulae eg KCl, NaBr if follow earlier inferences		$\mathbf{2}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(i)	$\frac{\text { Titre } \times 0.1}{1000}$ Answer to at least 3sf. If units given must be moles. Penalise incorrect units once only in (i) to (iv).Allow one slip in SF in (i) to (iii) In (i) to (iv) allow loss of trailing zeros if correct arithmetically		$\mathbf{1}$	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{2 ~ (b) (i i) ~}$	$1 / 2 \times$ answer to (i) Answer to at least 3sf. If units given must be moles.			$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(iii)	Answer to (ii) $\times \frac{1000}{25}=$			
concentration $($ mol dm Answer to at least 3 sf. If units $^{\text {given must be mol dm }}$.			$\mathbf{1}$	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{2 ~ (b) (i v) ~}$	Answer to (iii) $\times \frac{1000}{3.0}=$ (1)			$\mathbf{2}$
	Answer following correct method to 2 sf only (1) If units given must be mol dm			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)(i)	Accuracy of measuring cylinder makes answer to more than 2sf invalid.	$3.0 \mathrm{~cm}^{3}$ is only 2 sf		$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)(ii)	Use pipette or burette to measure concentrated sulphuric acid.	weighing	$\mathbf{1}$	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (b)(i)	$\frac{\text { Mass E }}{248}$Units need not be given but penalise incorrect units. [To at least two SF BUT penalise SF once only in Q3]	Answer only		$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3 ~ (b) (i i) ~}$	$50 \times 4.18 \times \Delta \mathrm{T}$ J OR $\frac{50 \times 4.18 \times \Delta \mathrm{T}}{1000}$ [To at least two SF: ignore sign]	Answer only with units		$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3 ~ (b) (i i i) ~}$	Answer to (b)(ii) Answer to (b)(i) Answer to 2 SF only and in kJ mol $^{-1}$ (1) Positive sign ONLY-award $_{\text {independently. (1) }^{\text {(1) }}}$ Answer cq on (b)(i) and (ii) Answers that do not follow heat method. moles	$\mathbf{3}$		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4	1 \checkmark Clean oil off Li (before weighing) 2 \checkmark Weigh lithium 3 \checkmark Transfer lithium (in one piece) to water underneath measuring cylinder/add Li to water in suitable separate apparatus. 4 \checkmark Read volume in measuring cylinder (after reaction ends). 5 \checkmark Volume $\mathrm{H}_{2}=$ Moles H_{2} (1) 24.0/24,000 units must match 6 \checkmark Moles $\mathrm{Li}=2 \times$ Moles H_{2} ${ }^{7} \checkmark$ Mass Li $=$ Moles Li $\times 7.0$ and $\%=\frac{\text { calculated Mass Li }}{\text { Mass Li }} \times 100 \%$		Use of gas, syringe Repeat experiment	7

6243/01A - Materials

Apparatus and Materials

Apparatus

Each candidate will require:

1. two boiling tubes in a rack;
2. apparatus and materials for carrying out a flame test;
3. Bunsen burner;
4. test tube holder to fit boiling tube;
5. one $10 \mathrm{~cm}^{3}$ measuring cylinder;
6. a supply of dropping pipettes;
7. spatula;
8. $\quad 50.0 \mathrm{~cm}^{3}$ burette, in stand and clamp, with small funnel for filling;
9. small beaker for draining burette;
10. $25.0 \mathrm{~cm}^{3}$ pipette and safety filler;
11. white tile;
12. two $250 \mathrm{~cm}^{3}$ conical flasks;
13. expanded polystyrene cup held securely in a $250 \mathrm{~cm}^{3}$ beaker;
14. access to a balance weighing to 0.01 g ;
15. one $50 \mathrm{~cm}^{3}$ or $100 \mathrm{~cm}^{3}$ measuring cylinder;
16. a thermometer, range $0-50^{\circ} \mathrm{C}$ (or similar), graduated in at least $0.5^{\circ} \mathrm{C}$ intervals (or a thermometer that can be read to an accuracy of at least $0.5^{\circ} \mathrm{C}$).

Materials

Each candidate will require:
(a) ${ }^{*} \quad 1.0 \mathrm{~g}$ of sodium chloride in a stoppered tube labelled A . The identity of this compound is not to be disclosed to candidates;
(b) * 1.0 g of ammonium chloride in a stoppered tube labelled B. The identity of this compound is not to be disclosed to candidates;
(c) ${ }^{*} 200 \mathrm{~cm}^{3}$ of aqueous sodium hydroxide of concentration $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ labelled Solution C;
(d) ${ }^{*} 200 \mathrm{~cm}^{3}$ of aqueous sulphuric acid of concentration $0.0480 \mathrm{~mol} \mathrm{dm}^{-3}$ labelled Solution D. The concentration of this solution is not to be disclosed to candidates;
(e) ${ }^{*}$ between 7.0 and 7.3 g of powdered sodium thiosulphate, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} .5 \mathrm{H}_{2} \mathrm{O}$, in a stoppered specimen tube labelled \mathbf{E};
(f) $10 \mathrm{~cm}^{3}$ of dilute sodium hydroxide; concentration approximately $0.5 \mathrm{~mol} \mathrm{dm}^{-3}$;
(g) $2 \mathrm{~cm}^{3}$ of dilute nitric acid; concentration approximately $2.0 \mathrm{~mol} \mathrm{dm}^{-3}$;
(h) $2 \mathrm{~cm}^{3}$ of aqueous silver nitrate; concentration approximately $0.05 \mathrm{~mol} \mathrm{dm}^{-3}$;
(i) $10 \mathrm{~cm}^{3}$ of dilute aqueous ammonia; concentration approximately $2.0 \mathrm{~mol} \mathrm{dm}^{-3}$;
(j) methyl orange indicator (centres may use screened methyl orange if their candidates are more familiar with this indicator);
(k) a supply of distilled water;
(1) red and blue litmus paper.

For home centres (ONLY), the chemicals identified with an asterisk ($*$) will be sent by a firm of manufacturing chemists.

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1}$ (a)(i)	Gas evolved: hydrogen $/ \mathrm{H}_{2}$ (1) hydrogen $/ \mathrm{H}^{+} / \mathrm{H}_{3} \mathrm{O}^{+} /$oxonium (ions) (1)	Hydroxonium / hydronium	H	
(Precipitate): barium sulphate $/ \mathrm{BaSO}_{4} / \mathrm{Ba}^{2+} \mathrm{SO}_{4}^{2-}(1)$	$\mathbf{3}$			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1 (a) (i i)}$	(Formula of liquid A): $\mathrm{H}_{2} \mathrm{SO}_{4}$ (1)		No CQ on 1 (a)(i)	$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1 (b) (i)}$	$\mathrm{K}^{+}(\mathbf{1})$		$\mathrm{K} /$ potassium	$\mathbf{2}$
	$\mathrm{I}^{-}(\mathbf{1})$	$\mathrm{I}_{2} /$ iodine $/$ iodine ion /iodide		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)(ii)	$\mathrm{Ag}_{(\mathrm{aq})}^{+}+\mathrm{I}_{(\mathrm{aq})} \rightarrow \mathrm{AgI}_{(\mathrm{s})}(1)$ CQ on halide given in (b)(i)	Equation with spectator ions on both sides	If state symbols incorrect or omitted	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (c)	Any two from: - purple/violet/mauve gas or vapour - black/dark solid - steamy / misty / white fumes or fumes turn blue litmus red or fumes give white smoke with ammonia - bad egg smell - yellow solid - choking fumes or fumes turn (acidified) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ green or blue	CQ on Cl^{-}or Br^{-}in 1(b)(i) - steamy / misty fumes or fumes turn blue litmus red or fumes give white smoke with ammonia CQ on Br^{-}in 1 (b)(i) - choking fumes or fumes turn (acidified) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ green or blue - brown gas or fumes	No CQ on F* or any other anion Black vapour Goes black Effervescence / fizzing / bubbling	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (d)	Either: Use a fume cupboard as (toxic/poisonous) I_{2} or $\mathrm{H}_{2} \mathrm{~S}$ (evolved) CQ on anion in B If chloride: (toxic / irritant) fumes of HCl If bromide: (toxic / irritant) fumes of HBr or Br_{2} or SO_{2} Or: Wear gloves as (liquid) A/ $\mathrm{H}_{2} \mathrm{SO}_{4}$ corrosive Or: Add slowly as reaction is exothermic (1)	HI or SO_{2} Acid corrosive	Lab coat, eye protection, tie hair back 'Reactants' or 'products' corrosive	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2(a)(i)	All points accurately plotted $(\mathbf{1)}$	1 plotting error		$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (a)(ii)	Two straight best-fit lines (1)		Best-fit line that includes T $=29.3^{\circ} \mathrm{C}$	$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (a)(iii)	Suitable extrapolations to find		$30.7-20.2=10.5^{\circ} \mathrm{C}$ scores zero maximum temperature (1)	
	Value not measured at Value $=4$ minutes			
	(1)		Value obtained from a non-vertical line	
	$\left[\begin{array}{ll}\text { n.B. Expected value is } 11.1- \\ \left.11.5^{\circ} \mathrm{C}\right]\end{array}\right.$			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)	Ignore SF (except 1 SF). Penalise 1 SF once in 2(b) Ignore units unless incorrect Penalise incorrect units once in 2(b)			
2 (b)(i)	Heat change $=25.0 \times 4.18 \times$ their answer to (iii) $=$		$26.25 \times 4.18 \times \triangle \mathrm{T}$	$\mathbf{1}$
	For 11.1 rise: 1160 (J)			
	For 11.2 rise: 1170 (J)			
For 11.3 rise: 1181 (J)				
For 11.4 rise: 1191 (J)				
For 11.5 rise: 1202 (J)				

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(ii)	$\frac{1.25}{65.4}=0.0191(\mathrm{~mol})(1)$			$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{2 (b) (i i i)}$	$0.800 \times \frac{25.0}{1000}=0.02(00)(\mathrm{mol})$			$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(iv)	Copper(II) sulphate $/ \mathrm{CuSO}_{4}$ as there are more moles of this $/$ reaction is $1: 1$ OR there is $0.0009 / 0.001$ more moles of copper(II) sulphate / CuSO	CQ on calculation in (b) (ii) or (iii) but not on rounding 0.0191 to 0.02	CuSO $_{4}$ to ensure that all the Zn reacts	$\mathbf{1}$
$\mathbf{1)}$				

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(v)	$\frac{-(b)(i) / 1000}{0.0191}=\text { answer (1) }$ (NB must use the smaller number of moles in 2(b) (iv) answer with negative sign and three sig figs (1) Expected answers: 11.1 rise:-60.7 (kJ mol$\left.{ }^{-1}\right)$ 11.2 rise: $-61.3\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ 11.3 rise: $-61.8\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ 11.4 rise: $-62.4\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ 11.5 rise: $-62.9\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ 10.5 rise: $-57.4\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$	Moles CQ on 2 (b)(iv) e.g. 0.002 moles CuSO_{4} Any calculated value to 3 SF and with negative sign scores second mark. Correct answer with no working scores full marks		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)	One of the following pairs: (Major source of error): heat is absorbed by metal / copper / thermometer / container (1) (Improvement): include its mass and specific heat capacity in calculation (1) OR (Major source of error): heat not spread out uniformly or temperature not uniform (1) (Improvement): stir the mixture or use a magnetic stirrer (1) OR (Major source of error): uncertainty in (maximum) temperature rise (1) (Improvement): measure temperature more often or use a computer to record temperatures (1) OR (Major source of error): not all the zinc transferred (1) (Improvement): weigh zinc container / weighing bottle after transfer (1)	(Major source of error): time lag in thermometer (1) (Improvement): use more responsive thermometer (1) First mark not scored where the major source of error is just the reverse of the improvement but second mark may be awarded e.g. (Major source of error): Mixture not stirred (0) (Improvement): stir the mixture (1) Correct improvement without source or error Burette does not score as a major source of error but allow pipette for the improvement mark (1)	More accurate / precise /digital thermometer use a lid (on the polystyrene cup) OR put (calorimeter) in a (glass) beaker Or lagging polystyrene cup thermometer or balance or burette insufficiently accurate (0) uncertainty in (maximum) heat rise c $\left(\mathrm{CuSO}_{4}\right)$ is not 4.18 $\mathrm{Jg}^{-10} \mathrm{C}^{-1}$ density of solution is not $1 \mathrm{~g} \mathrm{~cm}^{-3}$ Wash out zinc container	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (d)	$(+/-) \frac{2 \times 0.01}{1.25} \times 100 \%$	$(+/-) \frac{0.01}{1.25} \times 100 \%$		$\mathbf{1}$
$=1.6 \%$ (1)	Correct answer with no working			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (a)	Moles of cyclohexanol $\frac{10.0}{100}=0.1(00)(\mathrm{mol})$ theoretical yield $=0.1 \times 82=$ 8.2(0) (g) (1) percentage yield $=$ $\begin{equation*} \frac{4.10}{0} \times 100 \%=50(.0) \% \tag{1} \end{equation*}$ OR Mol cyclohexene $=\frac{4.1}{82}=0.05$ percentage yield $=0.05 \times 100$ 0.10 $=50(.0) \%(1)$ correct answer with some working scores (3) correct answer alone scores (2)	Transposition of M_{r} values scores (2) for yield $\begin{aligned} & =100 \times \frac{4.1}{10} \times \frac{82}{100} \\ & =33.6 \% \end{aligned}$	Values > 100 \% score zero unless method steps correct $100 \times \frac{4.1}{10}=41 \%(0)$	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (b)(i)	Water $/ \mathrm{H}_{2} \mathrm{O} /$ cyclohexanol/C $\mathrm{H}_{11} \mathrm{OH} / \mathrm{H}_{2} \mathrm{SO}_{4} /$ sulphuric acid (1)	Conc. $\mathrm{H}_{2} \mathrm{SO}_{4} /$ sulphuric acid		$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)(ii)	Carbon/C (1)	graphite	Coke/charcoal/soot	$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (b)(iii)	Either (The carbon must come from) cyclohexanol so using it up/a competing reaction	side reaction(s) carbon (in element or from carbon compound given in 3(b) (ii)) not available to form cyclohexene	Incomplete reaction Reduces temperature or heating efficiency.	$\mathbf{1}$
	Or Idea of a breakdown of reactant so that not all the reactant converted to desired product (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)(iv)	Eliminate incorrect steps and steps out of sequence and credit remaining correct steps (Step 1): wash with sodium hydrogencarbonate /carbonate / (1) (Step 2): wash with water (Step 3): dry with (anhydrous) calcium chloride or (anhydrous) sodium sulphate (1) (Step 4): (re-)distil (1)	Sodium carbonate or calcium carbonate (anhydrous) MgSO_{4} Fractional distillation	Recrystallisation scores zero. $\mathrm{NaOH} \text { or } \mathrm{KOH}$	4

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (c)(i)	(Reagent): $\mathrm{PCl}_{5} / \mathrm{SOCl}_{2}$ (1) (Result): steamy/misty fumes (1) OR (Reagent): $\mathrm{Na} /$ sodium (1) (Result): effervescence or positive test for H_{2} (1) OR (Reagent): carboxylic acid + conc sulphuric acid (followed by neutralisation) (1) (Result): fruity smell (1) second mark depends on first for all the above Names or formulae for reagents	White/cloudy fumes OR Gas which turns damp blue litmus paper red or forms white smoke with ammonia. (Reagent): acidified potassium dichromate((VI)) (1) (Result): orange to green / blue (1)	$\mathrm{PCl}_{5}(\mathrm{aq})$ or solution but allow observation mark White smoke KMnO_{4}	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (c)(ii)	Start \& final colours needed (Reagent): Add bromine (water) / Br_{2} / bromine in a non-aqueous solvent/stated solvent such as hexane (1) (Result): brown/redbrown/orange solution decolourised/goes colourless (1) OR (Reagent): (Acidified or alkaline) potassium manganate(VII) / KMnO ${ }_{4}$ (Result): purple to colourless / decolourised / brown (ppt)	potassium permanganate Green if alkaline	White smoke KMnO_{4} Yellow clear	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)	(From): colourless (To): (pale) pink (1)	(Pale) red		$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)	Route 1 (put solid into flask) Dissolve in less than $500 \mathrm{~cm}^{3}$ (distilled) water (1) In volumetric flask (1) Make up to the mark (1) mix/shake/invert (1) Route 2 (solid dissolved first) Dissolve in not more than 400 cm^{3} (distilled) water (1) (Transfer to) volumetric flask (1) Wash the contents of the beaker into the flask and make up to the mark (1) mix/shake/invert (1)	Small volume etc of water Graduated/standard flask Make up to the line or to $500 \mathrm{~cm}^{3}$ (1) Small volume etc of water Graduated/standard flask ...Make up to the line or to $500 \mathrm{~cm}^{3}$ (1)	Flask/measuring cylinder Flask/measuring cylinder Making up to $500 \mathrm{~cm}^{3}$ by adding ($500-\mathrm{V}$) cm^{3} where $\mathrm{V} \mathrm{cm}^{3}$ added to dissolve acid Making up to the mark before dissolving	4

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (c)	Ignore SF except 1 SF (penalise 1 SF once in 4 (c)) Ignore units unless incorrect. Penalise incorrect units once in 4 (c)			
4 (c)(i)	$\left(0.100 \times \frac{25.0}{1000}\right)=0.0025(\mathrm{~mol})$ \mathbf{l}			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (c)(ii)	$\left(\begin{array}{l}0.5 \times \text { answer for (i) } \\ \text { i.e. } 0.5 \times 0.0025) \\ =0.00125(\mathrm{~mol})(1)\end{array}\right.$		1	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (c)(iii)	$(20 \times$ answer for (ii) i.e. $20 \times 0.00125)=0.025$ $(\mathrm{~mol})(1)$		$\mathbf{1}$	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (c)(iv)	$\begin{aligned} & \frac{2.95}{\text { answer to (iii) }} \\ = & \frac{2.95}{0.025}=118 \quad\left(\mathrm{~g} \mathrm{~mol}^{-1}\right) \end{aligned}$		Wrong units	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (d)	Subtract 90 from answer to (c)(iv) (1) Divide remainder by 14 (1) Correct answer $\mathrm{n}=2$	Correct answer with some working or logic Answer alone (1)		$\mathbf{2}$

6244/01

If more than the correct number of answers is given penalise (-1) for each wrong answer. Answers can be A or a, etc.

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1 (a) (i)}$	A (1) E (1)			$\mathbf{2}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1}$ (a)(ii)	B (1) F (1)			$\mathbf{2}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1}$ (a)(iii)	A (1) C (1) D (1)			$\mathbf{3}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1}$ (a)(iv)	A (1) D (1)			$\mathbf{2}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)	Cis isomer (1) and trans isomer (1) of any of the following (trans isomer only shown):	Isomers based on cyclobutane or methylcyclopropane Molecules with bond angles 90° provided that the cis and trans structures are clearly different. Allow any other structure that is plausible. Allow CH_{3} - etc	Bonds shown as: $\mathrm{CH}_{2} \mathrm{OH}-$ $-\mathrm{CH}_{3} \mathrm{O}$ -HO . Penalise once only if cis and trans otherwise correct. Any cis and trans isomers of molecules other than $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$.	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (a)	Dilute: small amount of (ethanoic) acid in large volume of water/solvent (1) OR low concentration (1)	Low concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$or H^{+}ions; less concentrated; water added to lower the concentration; high concentration of water; dissolved in excess water	$\mathbf{2}$	
	Weak: slightly ionised (1) OR low concentration of hydrogen ions $/ \mathrm{H}_{3} \mathrm{O}^{+} / \mathrm{H}^{+}$compared with the concentration of the acid (1)		very dilute; not fully ionised; partially ionised; incompletely ionised; dissolved in excess water; any argument based on pH	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(i)	$K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$ Ignore $K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2}}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$ if it appears after the correct expression. If it is the only answer given it scores (0)	$\begin{aligned} & -\mathrm{CO}_{2}^{-} \text {for }-\mathrm{COO}^{-} \\ & {\left[\mathrm{H}^{+}\right] \text {for }\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]} \end{aligned}$	any expression including [$\mathrm{H}_{2} \mathrm{O}$]; [HA] instead of [$\mathrm{CH}_{3} \mathrm{COOH}$].	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(iii)	First mark	Use of $\left[\mathrm{H}^{+}\right]$for $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$	Just $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]$ on its own	2
	$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]$because all $\mathrm{H}_{3} \mathrm{O}^{+}$is from the acid or none/insignificant amount of $\mathrm{H}_{3} \mathrm{O}^{+}$comes from water			
	Second mark			
	In the denominator $6.31 \times 10^{-4} \ll 0.025$ (so can			
	be ignored)			
	OR because degree of ionisation is very small or negligible then $\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=0.025(1)$			
	If the answer to part (ii) uses			
	$0.025-6.31 \times 10^{-4}$ in the calculation score this $2^{\text {nd }}$ mark			
	then ignore any other second			
	assumption(s) suggested even if they are wrong.			
	Ignore any references to 'standard temperature'.			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)(i)	$\mathrm{I}^{\text {st }}$ mark			4
	The mixture is a buffer (1)			
	$2^{\text {nd }}$ mark			
	there are large amounts of			
	/a large reservoir of the acid			
	and its conjugate base/anion/salt (1)			
	$3^{\text {rd }}$ mark			
	EITHER			
	$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-}$		$\underline{t} \rightleftharpoons \mathrm{for}$	
	$\rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}(1)$		¢ for	
	OR both of $\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons$ $\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+}$	both equations in		
	$\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}$			
	and the equilibrium moves to			
	RHS.			
	$4^{\text {th }}$ mark			
	and so the ratio of /the			
	value of both [$\mathrm{CH}_{3} \mathrm{COOH}$] and			
	[$\mathrm{CH}_{3} \mathrm{COO}^{-}$] hardly changes (1)			
	Ignore any references to			
	$\text { addition of } \mathrm{H}_{3} \mathrm{O}^{+}$			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)(ii)	First mark: Refer to diagram. Both ranges shown so that the one for MO is between about pH 2 and 5 (outside the vertical section), the one for phenolphthalein is between about 7 and 10.3, and is wholly within the vertical section (1) The extent of the ranges within the above values is unimportant provided there is a range and not just a point at the quoted values. Second mark Methyl orange is already yellow/orange or has already changed colour before the vertical section or before/not on the vertical section (1)	before the endpoint	4 Third mark acid and a weak base and ethanoic acid is a weak acid.	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (d)	Equilibrium moves to LHS OR Equilibrium moves to reactants (1) pH goes up/rises/increases (1) stand alone. If it is said that the equilibrium moves to RHS then score (0) overall.		Just 'becomes more alkaline', 'becomes less acidic' on its own.	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark	
$\mathbf{3 (a) (i)}$	$K_{p}=\frac{p\left(\mathrm{NH}_{3}\right)^{2}}{p\left(\mathrm{~N}_{2}\right) p\left(\mathrm{H}_{2}\right)^{3}}$	(1)	$K_{\mathrm{p}}=\frac{\mathrm{P}_{\mathrm{NH} 3}{ }^{2}}{\mathrm{P}_{\mathrm{N} 2} \mathrm{P}_{\mathrm{H} 2}{ }^{3}}$ $p^{2}\left(\mathrm{NH}_{3}\right)$ etc Ignore the position of brackets.	Any use of square brackets []	$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (a)(ii)	$p\left(\mathrm{NH}_{3}\right)=\frac{0.2 \times 160=8.42 \mathrm{~atm}}{3.8}$	$\frac{160 \mathrm{~atm}}{19}$		
$p\left(\mathrm{~N}_{2}\right)=\frac{0.9 \times 160}{3.8}=37.9 \mathrm{~atm}$	$\frac{720}{19} \mathrm{~atm}$			
$p\left(\mathrm{H}_{2}\right)=\frac{2.7 \times 160}{3.8}=114 \mathrm{~atm}$	$\frac{2160 \mathrm{~atm}}{19}$	3		
	(1) for dividing moles of gas by 3.8 (1) for multiplying by 160 (1) for all three values, and the unit given at least once. Answers to 2 s.f. or more otherwise max (2) All three answers to 2 s.f. or more with the unit scores (3) whether working shown or not.	x 160 atm for the unit mark even if not stated again		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3 (a) (\text { iii) }}$	$K_{\mathrm{p}}=\frac{(8.42)^{2}}{(37.9)(114)^{3}}$ $=1.26 \times 10^{-6}\left(\mathrm{~atm}^{-2}\right)(1)$	$1.26 \times 10^{-6}\left(\mathrm{~atm}^{-2}\right)$ to $1.28 \times 10^{-6}\left(\mathrm{~atm}^{-2}\right)$ depending on the number of s.f. used.		$\mathbf{1}$
	unit not necessary, but if given must be correct to score the mark.	CQ on values in (ii) and/or on an incorrect expression in (i).	CQ on K_{p} being the wrong way up in (i) leads to $781250-$ $793650\left(\mathrm{~atm}^{2}\right)$	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (b)	The reaction is exothermic because K_{p} increases with decrease in temperature (1)		Any answer not based on values of K_{p}.	$\mathbf{1}$
Argument consequential on value of K_{p} from (a)(iii).	Just 'reaction is exothermic' alone			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (c)(i)	Increases (1) Ignore any comment on yield	faster/quicker	sooner	$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3 ~ (c) (i i) ~}$	Increases (1) Ignore any comment on yield	faster/quicker; rate of forward and back reactions increase equally.		$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (d)	Any answer which states or implies that the value of K alters scores zero overall. First mark: K_{p} remains constant (1) Second mark: Increase of partial pressure increases the value of the denominator or decreases the value of the fraction (and causes the equilibrium to move to RHS or increases amount of product) (1) Third mark: Hydrogen partial pressure is raised to power 3 or is cubed but nitrogen is raised only to power 1 so the doubling has greater effect. (1)	Maintain $K_{\text {p }}$...decreases value of K_{p}. Any answer based on le Chatelier, i.e. not referring to K_{p}, does not score the second mark nitrogen partial pressure is raised to no power; nitrogen partial pressure is third order	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)	2-amino-3-hydroxypropanoic acid (1)	3-hydroxy-2-amino- propanoic acid	Any answer based on the name of an alcohol; propionic instead of propanoic.	$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)(i)			$\mathrm{CH}_{2} \mathrm{OH}-$ on left	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)(ii)		$\begin{aligned} & \mathrm{NH}_{3}{ }^{+} \text {or } \mathrm{NH}_{3}{ }^{+} \mathrm{Cl}^{-} \text {or } \\ & \mathrm{NH}_{3} \mathrm{Cl} \end{aligned}$	-HOOC	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)(iii)	 OR		$\mathrm{CH}_{3} \mathrm{OCO}-\text { for } \mathrm{CH}_{3} \mathrm{COO}-$	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
(c)(i)	Incorrect compound			
scores (0) overall				

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (c)(ii)	(Angle of) rotation of plane of (plane) polarised (monochromatic) light (1) See answer to (c)(iii)		Twisting or bending or refracting or reflecting	$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (c)(iii)	One would rotate (plane polarised light) to the left or anticlockwise and one to the right or clockwise.	One rotates (plane polarised light) in positive direction, one in negative.	OR Rotate (plane polarised light) in opposite directions (1) This can also be allowed if answer appears in (c)(ii)	Do not penalise twist/bend/refract/reflect if they have been penalised in (c)(ii). If rotation is mentioned here but not in (c)(ii) then the mark for (c)(ii) can be awarded there, unless (c)(ii) is wrong when it scores (0)

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (d)(i)	If structures have bonds to the atoms at each end score (0) Brackets are not essential if one repeat unit is shown. More of the chain than one repeat unit is allowable provided that the repeat unit is clearly shown, e.g.: (2) Above structure with no, or incorrect, brackets scores (1) The $\mathrm{C}=0$ bond must be explicitly shown; if it is not but the structure is otherwise correct score (1) Also for (1) mark: OR	Allow inverse throughout, e.g. etc.		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (d)(ii)	 OR More of the chain than one repeat unit is allowable; the repeat unit need not be shown. If more units shown then: ester link (1) remainder of chain correct (1) if it is a whole number of repeat units The $\mathrm{C}=0$ bond must be explicitly shown; if it is not but the structure is otherwise correct score (1) Do not penalise here if already penalised in (d)(i). For 1 mark only:	The methylene group can be shown as $-\mathrm{CH}_{2}-$	ester link in a chain not derivable from serine	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{5 ~ (a)}$	The energy change when one mol of an ionic solid or ionic lattice (1)	enthalpy change, heat change, enthalpy or heat evolved is formed from ions in the gaseous state (1) formed from its gaseous ions	Energy or enthalpy or heat required	$\mathbf{2}$
OR The energy change when one mol of solid/lattice is formed from its ions in the gaseous state (2) atoms; 1 mol of gaseous ions	lgnore any reference to standard state.			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (b)	Answer - 2053 ($\mathrm{kJ} \mathrm{mol}^{-1}$) with some working scores (3), with no working (2). Ignore wrong or no units. $\begin{aligned} (-859) & =(+180)+2(+122) \\ & +(+1468)+2(-349)+ \end{aligned}$ $\Delta H_{\text {latt }}$ OR $\begin{array}{r} \Delta H_{\text {latt }}=(-859)-(+180)-2(+122) \\ -(+1468)-2(-349) \end{array}$ (2) $\begin{equation*} \therefore \Delta H_{\text {latt }}=-2053\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \tag{1} \end{equation*}$ The following errors may arise: Failure to multiply -349 by 2 ; answer of -1931 with some working scores (2), no working (1) Failure to multiply +122 by 2 ; answer of -2402 with some working scores (2), no working (1) Failure to multiply both the above by 2; answer of -2280 Any algebraic or transcription error, penalise (1) each time.	Equivalent information using symbols for the energy changes, or words		3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{5 ~ (c) (i) ~}$	Theoretical model is based on 100% ionic bonding (1)			$\mathbf{2}$
If experimental Born Haber value is different or more exothermic/bigger this is due to some covalency or some covalent character in the bonding (1)				

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (c)(ii)	Any answer based on atoms scores (0) overall. First mark Be^{2+} (ion) or beryllium ion is smaller (than the Ba^{2+} (ion)) or Barium ion (1) OR Cations get larger down the group (and have the same charge) (1) Second mark Be^{2+} ion polarises/distorts the chloride ion more (than Ba^{2+} does), leading to covalency/covalent character (1) The opposite argument starting from barium ions (2)	Cation charge density decreases down the group.	Be is smaller than Ba Atoms get larger down the group polarises the chlorine ion; polarises the chlorine; weakens the ionic bond; Be^{2+} ion being polarised. Any argument based on electronegativity differences	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6(a)	First mark	H^{+}for $\mathrm{H}_{3} \mathrm{O}^{+}$		3
	For showing reaction of PbO with $\mathrm{H}_{3} \mathrm{O}^{+}$ or any acid and with OH^{-}or any alkali, equations correct or not (1)			
	Second mark: any one of $\mathrm{PbO}+2 \mathrm{H}^{+} \rightarrow \mathrm{Pb}^{2+}+\mathrm{H}_{2} \mathrm{O}$			
	$\mathrm{PbO}+2 \mathrm{H}_{3} \mathrm{O}^{+} \rightarrow \mathrm{Pb}^{2+}+2 \mathrm{H}_{2} \mathrm{O}$			
	$\mathrm{PbO}+2 \mathrm{HNO}_{3} \rightarrow \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O}$			
	$\mathrm{PbO}+2 \mathrm{HCl} \rightarrow \mathrm{PbCl}_{2}+\mathrm{H}_{2} \mathrm{O}$	$\begin{array}{rl} \mathrm{PbO}+4 & \mathrm{HCl} \\ \rightarrow & \mathrm{PbCl}_{4}^{2-} \\ + & 2 \mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{O} \end{array}$		
	$\begin{equation*} \mathrm{PbO}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{PbSO}_{4}+\mathrm{H}_{2} \mathrm{O} \tag{1} \end{equation*}$			
	Third mark: any one of $\mathrm{PbO}+2 \mathrm{OH}^{-} \rightarrow \mathrm{PbO}_{2}^{2-}+\mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & \mathrm{PbO}+\underset{\mathrm{Na}_{2} \mathrm{PbO}_{2}+\mathrm{H}_{2} \mathrm{O}}{2 \mathrm{NaOH} \rightarrow} \end{aligned}$		
	$\mathrm{PbO}+2 \mathrm{OH}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow\left[\mathrm{~Pb}(\mathrm{OH})_{4}\right]^{2-}$	$\begin{align*} & \mathrm{Pb}(\mathrm{OH})_{4}{ }^{2 \cdot} \\ & \mathrm{PbO}+2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{O} \tag{1}\\ & \rightarrow \mathrm{Na}_{2} \mathrm{~Pb}(\mathrm{OH})_{4} \end{align*}$		
	Ignore any state symbols Allow multiples			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{6 ~ (b) (i) ~}$	PbCl_{2} Ionic (1)	Electrovalent		2
	SnCl_{4} Covalent (1)	Convalent	dative covalent	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6 (b)(ii)	EITHER Lead (IV) is less stable than lead (II) so PbO_{2} is an oxidising agent or is reduced (1) Tin (IV) is more stable than tin (II) so SnO_{2} reacts as a base (1)	Lead (+2) etc for lead(II)	2	
OR	Stability of (+4) state relative to (+2) state decreases down the group / from tin to lead (1) PbO oxidising agent, SnO_{2} a base. (1)			

\(\left.$$
\begin{array}{|l|l|l|l|l|}\hline \begin{array}{l}\text { Question } \\
\text { Number }\end{array} & \text { Correct Answer } & \text { Acceptable Answers } & \text { Reject } & \text { Mark } \\
\hline 6 \text { (c)(i) } & \begin{array}{l}\mathrm{HCl} \text { shown as a product in both } \\
\text { equations (1) }\end{array}
$$ \& \begin{array}{l}\mathrm{H}^{+}+\mathrm{Cl}^{-} for \mathrm{HCl}

throughout

\mathrm{PCl}_{3}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{PO}_{3}+3 \mathrm{HCl}(1)

\mathrm{PCl}_{5}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}+5 \mathrm{HCl}

\mathrm{OR}

\mathrm{PCl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{POCl}_{3}+2 \mathrm{HCl}

(1)\end{array} \& \mathrm{PH})_{3} for \mathrm{H}_{3} \mathrm{PO}_{3}\end{array}\right]\)\begin{tabular}{l}

Allow multiples
Ignore any state symbols

\hline
\end{tabular}

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6 (c)(ii)	First mark NaCl pH 7 and $\mathrm{PCl}_{3} \mathrm{pH}$ any value $-1 \leq \mathrm{pH}<4$ (1) Credit pH values independently of any reasoning. Second mark NaCl dissolves to hydrated/aqueous ions OR $\mathrm{NaCl}(\mathrm{s})(+\mathrm{aq}) \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$ (1) Third mark PCl_{3} hydrolyses (1)	reacts to produce acid(s)	Neutral for pH 7; acidic	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)(i) QWC	ligands split d orbitals (1) This first mark is stand alone absorb light in (part) of visible region/all colours except blue(1) Stand Alone	If sequence in wrong order eg jump then absorb Or any implication that this is an emission spectra then only first mark (orbitals splitting) available		$\mathbf{3}$
to a new level (1)				

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1 (b) (i i)}$	No ligands to split (d) orbitals (1) Implication that all d orbitals the same	No complex ion /water ligand present	Full so cannot jump	$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (c)(i)	X $\quad \mathrm{CuCl}$ OR $\mathrm{Cu}_{2} \mathrm{Cl}_{2} \quad$ OR $\operatorname{copper(I)}$ chloride(1) allow cuprous chloride $\mathrm{CuCl}_{2}+\mathrm{Cu} \longrightarrow 2 \mathrm{CuCl}$ or $\mathrm{CuCl}_{2}+\mathrm{Cu} \longrightarrow \mathrm{Cu}_{2} \mathrm{Cl}_{2}(1)$	Allow HCl on both sides		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1 (c) (i i) ~}$	Redox (1)	Reduction		$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1 (c) (i i i) ~}$	$\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}$(1)			$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1 (c) (i v)}$	The copper(I) ion has a full d (sub) shell/d ${ }^{10}$ OR All d orbitals are full (1) (so d - d transitions impossible) Or No partly filled d	d orbitals not splitting	$\mathbf{1}$	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1 (c) (v)}$	$\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}{ }^{2+}$ Or $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$ (1) [] not essential		$\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{6}{ }^{2+}$ And $\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}$	$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (a)	Nucleophilic substitution (1)	Hydrolysis		$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(i)	Expt 1 and 2/concentration of 1-brombutane constant Concentration of hydroxide trebled, rate x3 First order with respect to OH- (1) Expt 2 and 3/concentration of hydroxide constant. Concentration of 1-bromobutane x4, rate x4. First order with respect to 1-bromobutane.(1) If both orders given with no explanation 1 (out of 2)		$\mathbf{3}$	
Rate $=k[1$-bromobutane] [hydroxide] (1) mark rate equation consequently.				

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(ii)	Both arrows must be in first step Allow $\mathrm{S}_{\mathrm{N}} 1$ if rate equation in 2(b)(i) is zero order in OH^{-}and first order wrt. RBr Allow arrow from negative charge ignore $\delta+$ and δ - Lone pairs need not be shown			3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)(i)	The $S_{N} 1$ mechanism involves the production of a planar intermediate (1) which can be attacked from both sides(of the plane)(1) producing a racemic mixture/ equal amounts of both isomers/ both enantimorphs (1) last mark stand alone		4	
The $S_{N} 2$ mechanism Either involves attack from opposite side to Br Or would produce a single (inverted) optical isomer or single enantiomorph Or Attack from one side only Or Intermediate not planar (1)				

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)(ii)	The RDS is the slowest step (in a multi-step mechanism) (1)	References to those species in the rate equation Breaking of bond between carbon and bromine/formation of carbocation / carbonium ion Or sketch to show this Or equation (1)	2	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (a)(i)	(1) If charge on wrong carbon leading to 1 -bromoproduct only the $1^{\text {st }}$ mark may be awarded.			3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3 ~ (a) (i i) ~}$	Secondary intermediate/carbocation is the more stable (1) Or reverse argument Or drawings	Secondary bromopropane is more stable	$\mathbf{1}$	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)	EITHER only consider changes Bonds broken $\begin{aligned} 3 \times C=C=3 \times 612 & =(+) 1836 \\ 3 \times H-H=3 \times 436 & =(+) 1308 \end{aligned}$ (+)3144 (1) Bonds formed $\begin{align*} & \begin{aligned} 3 \times C-C & =3 \times 347=(-) 1041 \\ 6 \times C-H & =6 \times 413 \end{aligned} \\ & \begin{aligned} &(-) 2478 \\ & \text { Enthalpy change }=3144+(-3519) \\ &=-375 \mathrm{~kJ} \mathrm{~mol}^{-1}(1) \end{aligned} \end{align*}$ OR break and make all bonds Bonds broken $\begin{aligned} & 3 \times C-C=3 \times 347=(+) 1041 \\ & 3 \times C=C=3 \times 612=(+) 1836 \\ & 6 \times C-H=6 \times 413=(+) 2478 \\ & 3 \times H-H=3 \times 436=(+) 1308 \end{aligned}$ Bonds formed $\begin{aligned} & 6 \times C-C=6 \times 347=(-) 2082 \\ & 12 \times C-H=12 \times 413=(-) 4956 \end{aligned}$ $\begin{align*} \text { Enthalpy change }=6663 & +(-7038) \tag{1}\\ & =-375\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right. \tag{1} \end{align*}$	+375 is worth 2 marks since only one error. mark the third mark consequentially		3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (c)(i)	The unused p electron orbitals overlap (sidewayst to produce a π system that extends over the whole ring of carbon atoms) (1) Diagram (1)	Any suggestion that sigma bond being formed	2	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (c)(ii)	Addition would disrupt the delocalised π system (1) Substitution restores or retains the delocalised π system and this has greater (energetic) stability (1)	Allow reverse argument		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (d)(i)	One in which the solute shows high solubility in hot but low in cold (1)			$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (d)(ii)	Firsthot filtration/ second step (1)			$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (d)(iii)	Soluble impurities will not crystallise out after cooling OR Soluble impurities remain in solution after cooling OR Cold solution is not saturated with the impurities (1)		$\mathbf{1}$	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (d)(iv)	To remove any impure solvent/solution on crystals (1) Must be idea of liquid not solid Allow remove any soluble impurities still in the solution			$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark	
3 (d)(v)	Minimum (volume) of hot solvent OR wash with (ice-)cold solvent OR $\\|^{\text {st }}$ filtration so that crystals not removed. (1)	"Bullets 1, 2 or 5"		1	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{4}$	Diagram Stand alone Lozenge drawn (1) At least 2 horizontal and 2 vertical tie bars starting at 50/50 mixture (1) Explanation - stand alone Vapour richer in the more volatile component/ hexane (1) (Evaporates,)condenses and reboils(1) Pure hexane distilled off (1) If say heat at $69^{\circ} \mathrm{C}$ and boil off hexane NO marks for explanation		5	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (b)(i)	Carbonyl group OR Aldehyde or ketone (both needed) OR C=O group (1)			$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (b)(ii)	Aldehyde/CHO			
	OR			
"Not a ketone" if mark awarded in (i) (1)				

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{5 ~ (b) (i i i) ~}$	Must have (one) C=C (1)	Alkene Ignore unsaturated group		$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{5}$ (c)(i)			Side chain EXCLUDED BY	$\mathbf{1}$
QUESTION				

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (c)(ii)	 (1) for correct structure or with the bromine on carbon 2 (1) mark for indentification of chiral centre	If give side chain in 5(c)(ii) allow marks here consequentially		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (c)(iii)	Substitution in the benzene ring (1) Addition to side chain (1) OR Substitution in the benzene ring (1) Different positions around the ring/multiple substitution (1)	Reacts by substitution and addition without clarification 1 mark only	Nucleophilic substitiution	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{6 ~ (a) ~}$	(dirty/grey) green ppt (1) (Then a dark) green solution (1) This mark does not depend on the colour of the ppt.	Any green		$\mathbf{2}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{6 ~ (b) (i) ~}$	$\mathbf{1}^{\text {st }}$ mark Both directions of change of position of equilibrium given (1) $\mathbf{2}^{\text {nd }}$ mark Explanation involving H			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{6 ~ (b) (i i) ~}$	Oxidation number of $\mathrm{Cr} \mathrm{in} \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ and $\mathrm{CrO}_{4}{ }^{2-}$ is +6. (1) Actual oxidation number of Cr must be stated	No change in ON of Cr	$\mathbf{1}$	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{6 (c) (i)}$	$2 \mathrm{Cr}^{3+}+\mathrm{Zn} \rightleftharpoons 2 \mathrm{Cr}^{2+}+\mathrm{Zn}^{2+}(\mathbf{1})$ Ignore state symbols	Multiples		$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{6 (c) (i i)}$	$\mathrm{Cr}^{2+}+\mathrm{Zn} \rightleftharpoons \mathrm{Cr}+\mathrm{Zn}^{2+}$ (1) Ignore state symbols	Multiples		$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6(c)(iii)	E° for Zn reducing Cr^{3+} going to Cr^{2+} is+ 0.35 $\mathrm{~V})$ and E° for reducing Cr^{2+} to $\mathrm{Cr}=-0.14(\mathrm{~V})(1)$ Both required for 1 mark because E° for second reaction is negative / not feasible(1) Answers based on other use of the data eg. As cell diagrams and loss of electrons can score full marks	Must be some reasoning for second mark	2	
Second mark consequential on figures in first part.	Note If both E values correct final product is $\underline{\mathrm{Cr}^{2+}}$ If E_{1} and E_{2} are both calculated as +ve -final product is Cr If E_{1} and E_{2} both calculated as negative final product is $\mathrm{Cr} r^{3+}$			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6 (d)	Two possible routes ignore sig figs 1st mark Amount of dichromate in used in titration $\begin{aligned} & =\frac{19.00 \times 0.0136}{1000} \\ & =2.584 \times 10^{-4} \mathrm{~mol} \end{aligned}$ 2nd mark Mols of iron = $\begin{align*} & \frac{6 \times 19.00 \times 0.0136}{1000}(1) \tag{1}\\ & =0.00155 \mathrm{~mol}\left(1.550 \times 10^{-3}\right) \end{align*}$ 3rd mark Total amount in $250 \mathrm{~cm}^{3}$ $\begin{aligned} & =\frac{10 \times 6 \times 19.00 \times 0.0136}{1000}(1) \\ & =0.0155 \mathrm{~mol}\left(1.55 \times 10^{-2}\right) \end{aligned}$ OR Conc of Fe^{2+} $\begin{aligned} & =\frac{0.00155}{0.025}(1) \\ & =0.0620 \mathrm{~mol} \mathrm{dm}^{-3} \end{aligned}$ 4th mark Mass of iron(II) sulphate $\begin{align*} & =\frac{152 \times 10 \times 6 \times 19.00 \times 0.0136}{1000} \\ & =2.357 \mathrm{~g} \tag{1} \end{align*}$ OR Mass of FeSO_{4} in $250 \mathrm{~cm}^{3}$ $\begin{aligned} & =\frac{0.0620 \times 152}{4} \\ & =2.357 \mathrm{~g} \mathrm{dm}^{-3} \end{aligned}$ 5th mark Percentage of iron sulphate $\frac{2.357 \times 100}{4.00}$ = 58.9% (1) allow 59	Alternative routes are possible for full marks Notes If use 56 (Fe) in place of 132 they get 21.7%.		5

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\begin{aligned} & 6(e) \\ & \text { QWC } \end{aligned}$	${ }^{\text {st }}$ mark Viable separation technique after reaction with heating with acidified potassium dichromate(VI) (1) e.g. If change in colour of dichromate from orange to green distil out product(as it is formed) $2^{\text {nd }}$ mark If no change in colour tertiary alcohol (1) $3^{\text {rd }}$ mark Either Test distillate of other two with Tollens' reagent If silver mirror aldehyde present and alcohol was primary (1) If no silver mirror ketone present and alcohol was secondary(1) OR Fehling's in place of Tollens' If answer just describes tests without chemical argument 1 out of the last two marks	If reflux to convert primary right through to acid and secondary to ketone. Allow dnp for ketone And a positive test for acid i.e not proof by elimination.		4

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)(i)	moles $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-i}$ in mean titre $=$ mean titre $\times 0.100$ (1) 1000 moles oxidising agent in 25.0 $\mathrm{cm}^{3}=\frac{\text { above }}{6}$ conc $^{\mathrm{n}}$ oxidising agent in $\mathbf{B}=$ above $\times \frac{1000}{25}$ (1) [lgnore SF except in final conc ${ }^{n}$] Answer must be to 3SF for $3^{\text {rd }}$ mark. If units given must be correct.			3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1 (b) (i i)}$	Molar mass $=$$\underline{3.20}$ answer to (i) [To at least 2 SF] IGNORE units.		$\mathbf{1}$	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1 (c) (i)}$	Error $=\frac{\text { uncertainty }}{\text { reading }} \times 100 \%$ OR explanation making this point.			$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1}$ (c)(ii)	KI (already) in excess	oxidising agent is limiting		$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (a)	Observations Any green for both C and D. (1) Inference d-block (1)	Any blue	$\mathbf{2}$	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(i)	Observations Green precipitate (Insoluble in excess ammonia) (1) Brown precipitate (1)			$\mathbf{4}$
Inferences Iron(II) / Fe Iron(III) hydroxide / $\mathrm{Fe}(\mathrm{OH})_{3}$ (1)	$\left[{\left.\mathrm{Fe}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] /}_{\mathrm{Fe}_{2} \mathrm{O}_{3}}\right.$			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(ii)	Observations Purple (solution) (1) Colourless / yellow (solution) (1) Inference Oxidation / redox(1)	Decolourised / discharged	disappeared	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{2 ~ (b) (i i i) ~}$	$\mathrm{Fe}^{2+} \rightarrow \mathrm{Fe}^{3+}+\mathrm{e}^{(-)}$ Ignore state symbols			$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)(i)	Observations Green precipitate (1) Insoluble in excess NaOH (1) Inference $\mathrm{Ni}(\mathrm{OH})_{2}$ / nickel(II) hydroxide (1)	$\left[\mathrm{Ni}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2 / 4}\right]$		3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)(ii)	Observation White precipitate (1) Inference Barium sulphate $/ \mathrm{BaSO}_{4}(\mathbf{1)}$		Green ppte	$\mathbf{2}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (d)	$\mathbf{C} \quad \mathrm{FeSO}_{4}$ (1)			$\mathbf{2}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (a)	Observation sweet / fruity/ glue smell (1) Inferences ester (1) E is alcohol (1)	Allow ester smell as observation		$\mathbf{3}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3 ~ (b) ~}$	Observation Green / blue (1) Inferences Primary or secondary alcohol $\mathbf{(1)}$	Not tertiary alcohol Dichromate(VI) reduced		$\mathbf{3}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3 (c)}$	Observation Yellow precipitate (1) Inferences lodoform / tri-iodomethane / $\mathrm{CHI}_{3}(\mathbf{1})$ $\mathrm{CH}_{3}-\mathrm{CH}(\mathrm{OH})(1)$	Methyl secondary alcohol or ethanol(both)	Ethanal and / or methyl ketone	$\mathbf{3}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (d)	Compound 1 $\left.\mathrm{CH} \mathrm{CH}_{3} \mathrm{OH}\right) \mathrm{CH}_{3}(1)$ Compound 2 Alternatives: CH2	Full structural formula for each- showing all atoms and bonds.(Penalise omission of hydrogens once only) Skeletal formula	C-HO bond	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3 (e)}$	Propan-2-ol 6:1:1 OR Butan-2-ol 1:1:2:3:3 Allow cq from (d)			$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4	1 \checkmark Make up equimolar solutions of transition metal ions. 2 \checkmark Mix same volumes of solutions. 3 Same temperature. 4 \checkmark Add KI or $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ last. 5 Stir / mix and start timing as last solution added 6 Stop timing when blueblack colour first appears. 7 \checkmark Shorter the time the more effective the catalyst	$\frac{\text { rate } \mathrm{Fe}^{2+}}{\text { rate } \mathrm{Co}^{2+}}=\frac{\text { time } \mathrm{Co}^{2+}}{\text { time } \mathrm{Fe}^{2+}}$		7

6246/01A - Materials

Apparatus and Materials

Apparatus

Each candidate will require:

1. six test tubes and two boiling tubes in a test tube rack;
2. one $10 \mathrm{~cm}^{3}$ and two $25 \mathrm{~cm}^{3}$ measuring cylinders;
3. a supply of dropping pipettes;
4. spatula;
5. $50.0 \mathrm{~cm}^{3}$ burette, in stand and clamp, with small funnel for filling;
6. small beaker for draining burette;
7. $25.0 \mathrm{~cm}^{3}$ pipette and safety filler;
8. white tile;
9. two $250 \mathrm{~cm}^{3}$ conical flasks;
10. one $100 \mathrm{~cm}^{3}$ beaker;
11. a supply of hot water (about $70^{\circ} \mathrm{C}$) and a $250 \mathrm{~cm}^{3}$ beaker for a water bath.

Materials

Each candidate will require:
(a) $200 \mathrm{~cm}^{3}$ of aqueous sodium thiosulphate, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, of concentration $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ labelled Solution A;
(b) $200 \mathrm{~cm}^{3}$ of aqueous potassium iodate, KIO_{3}, of concentration $0.0150 \mathrm{~mol} \mathrm{dm}^{-3}$ labelled Solution B. The identity of this solution is not to be disclosed to candidates;
(c) 1.0 g of hydrated iron(II) sulphate, $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$, in a stoppered tube labelled C. The identity of this compound is not to be disclosed to candidates;
(d) 1.0 g of hydrated nickel(II) sulphate, $\mathrm{NiSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, in a stoppered tube labelled D. The identity of this compound is not to be disclosed to candidates;
(e) $5 \mathrm{~cm}^{3}$ of propan-2-ol labelled E. The identity of this compound is not to be disclosed to candidates;
(f) $100 \mathrm{~cm}^{3}$ of aqueous potassium iodide; concentration approximately $0.5 \mathrm{~mol} \mathrm{dm}^{-3}$;
(g) $100 \mathrm{~cm}^{3}$ of dilute sulphuric acid; concentration approximately $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$;
(h) $2 \mathrm{~cm}^{3}$ of ethanoic acid in a stoppered test tube labelled ethanoic acid;
(i) $10 \mathrm{~cm}^{3}$ of dilute aqueous ammonia; concentration approximately $2.0 \mathrm{~mol} \mathrm{dm}^{-3}$;
(j) $15 \mathrm{~cm}^{3}$ of dilute sodium hydroxide; concentration approximately $0.5 \mathrm{~mol} \mathrm{dm}^{-3}$;
(k) $5 \mathrm{~cm}^{3}$ of dilute sulphuric acid; concentration approximately $1.0 \mathrm{~mol} \mathrm{dm}{ }^{-3}$;
(l) $5 \mathrm{~cm}^{3}$ of dilute hydrochloric acid; concentration approximately $2.0 \mathrm{~mol} \mathrm{dm}^{-3}$;
(m) $5 \mathrm{~cm}^{3}$ of aqueous barium chloride; concentration approximately $0.2 \mathrm{~mol} \mathrm{dm}{ }^{-3}$;
(n) $5 \mathrm{~cm}^{3}$ of aqueous potassium manganate(VII); concentration approximately $0.02 \mathrm{~mol} \mathrm{dm}^{-3}$;
(o) access to a bottle of concentrated sulphuric acid;
(p) $60 \mathrm{~cm}^{3}$ of aqueous sodium carbonate; concentration approximately $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$;
(q) $5 \mathrm{~cm}^{3}$ of aqueous potassium dichromate(VI); concentration approximately $0.20 \mathrm{~mol} \mathrm{dm}^{-3}$;
(r) $10 \mathrm{~cm}^{3}$ of iodine/potassium iodide solution made up by adding 2 g iodine to 6 g potassium iodide dissolved in $100 \mathrm{~cm}^{3}$ water and labelled aqueous iodine;
(s) $20 \mathrm{~cm}^{3}$ of freshly prepared aqueous starch; concentration approximately 1%;
(t) a supply of distilled water.

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1 (a)}$	Add starch when iodine colour almost disappeared / (pale) straw/pale yellow (1)	Otherwise iodine-starch complex /black /blue-black solid precipitates /formed(1)	Allow grey ppt. since in the experiment the flask will contain the white solid Cul	$\mathbf{3}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)	In the calculation ignore significant figures unless the answers rounds to 1 during the calculation Silver Mass of $\mathrm{AgCl}=0.244 \mathrm{~g}$ Mass of $\mathrm{Ag}=\frac{0.244 \times 108}{143.5}$ $\begin{aligned} \% \mathrm{Ag} & =\frac{0.1836 \times 100}{1.40} \\ & =13.1(1) \%(1) \end{aligned}$ Copper Moles of thio used $\begin{align*} & =\frac{38.45 \times 0.1}{1000} \tag{1}\\ & =3.845 \times 10^{-3} \end{align*}$ Moles of Cu^{2+} $\begin{align*} & =\frac{38.45 \times 0.1}{1000} \tag{1}\\ & =3.845 \times 10^{-3} \end{align*}$ Mass of Cu $\begin{align*} & =\frac{38.45 \times 0.1 \times 63.5}{1000} \tag{1}\\ & =0.244(1) \mathrm{g} \end{align*}$ $\begin{aligned} \% C u & =\frac{0.244 \times 100}{1.40} \\ & =17.4(4) \%(1) \end{aligned}$ Gold Calculate percentage of gold by difference $100-(13.1+17.4)=69.5 \%(1)$ Consequential on \% of silver and copper no matter what the answers	Notes Allow error carried forward. Penalise an error only once in any part of the calculation if this is then carried forward correctly to give a percentage.		7

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (a)(i)		Allow lattice energy with arrow the other way and positive sign. I think we allow it as the question is not direction specific	$\Delta \mathrm{H}_{\text {solubility }}$	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (a)(ii)	$1^{\text {st }}$ mark EITHER Solubility is balance between lattice energy and hydration energy OR heat released on hydration must compensate for heat needed to break up lattice OR $\Delta H_{\text {solution }}=$-lattice energy + Khydration energies (1) This equation scores the mark and could be in quoted as part of the energy cycle $2^{\text {nd }}$ mark Both lattice energy and hydration energy decrease as cations get larger/ ionic radius increases (1) $3^{\text {rd }}$ mark But hydration energy decreases more /lattice energy decreases less / both decrease but $\Delta \mathrm{H}_{\mathrm{LE}}$ is less significant(because of large anion size) (1) $4^{\text {th }}$ mark So enthalpy of solution becomes more endothermic down the group / less exothermic (hence less soluble)(1) Stand alone	Ions (place of cations) Become less exothermic Reference to atoms not ions penalise once If no change in LE in second mark carry forward this error to third mark? This does not apply to hydration energy		4

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(i)	van der Waals / London / dispersion / induced dipole/instantaneous dipole - instantaneous dipole (1) Hydrogen bond(1)			$\mathbf{2}$
Ignore Dipole-dipole interactions but if give THREE answers one of which is wrong max 1				

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(ii)	The acid /COOH group (1) Can form hydrogen bonds with the water(1)			$\mathbf{2}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(iii)	Energy released on formation of intermolecular forces (between aspirin and water) is less than the energy required to overcome the existing intermolecular forces OWTTE Or Large hydrophobic benzene ring /non-polar ring/non- polar group leads to low solubility Or instead of "energy"	Any reference to breaking of molecule or bonds with molecules score zero to overogen bonds formed fail effect of the benzene ring (1)	$\mathbf{1}$	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{2 ~ (b) (i v) ~}$	It is ionic and the ions can be hydrated providing enough energy to cause it to dissolve or Strong interaction between water and ions (1)			$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)(i)	Methanol / $\mathrm{CH}_{3} \mathrm{OH}(\mathbf{1)}$			$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)(ii)	Ethanoyl chloride / $\mathrm{CH}_{3} \mathrm{COCl}(1)$	$\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$ or name	$\mathrm{CH}_{3} \mathrm{COCl}$ solution	$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)(iii)	Sodium hydroxide $/ \mathrm{NaOH}$ OR sodium carbonate $/ \mathrm{Na}_{2} \mathrm{CO}_{3}$ OR sodium hydrogen carbonate $/ \mathrm{NaHCO}_{3}(1)$			$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (d)	$\mathrm{CH}_{3} \mathrm{COOC}_{6} \mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{Na}+\mathrm{HCl} \longrightarrow$ $\mathrm{CH}_{3} \mathrm{COOC}_{6} \mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{H}+\mathrm{NaCl}(1)$	If draw benzene ring it must be correct	2	
	Salicylic acid is a weaker acid $/ \mathrm{HCl}$ is a stronger acid $/$ Salicylate ions are a base(1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (e)				2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (a)		Dots or crosses		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)(i)	$\mathrm{HCN} \rightleftharpoons \mathrm{H}^{+}+\mathrm{CN}^{-}$ $K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CN}^{-}\right]}{[\mathrm{HCN}]}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{[\mathrm{HCN}]}$ $\frac{\left[\mathrm{H}^{+}\right]^{2}}{0.220}=4.90 \times 10^{-10}(1)$ $\begin{aligned} {\left[\mathrm{H}^{+}\right] } & =\sqrt{ } 4.90 \times 10^{-10} \times 0.220 \\ & =1.038 \times 10^{-5}(1) \\ \mathrm{pH} & =-\log _{10} 1.038 \times 10^{-5} \\ & =4.98(4)(1) \text { Allow } \\ 5.00 & \text {. } \end{aligned}$ Correct answer with no working (3)			3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)(ii)	100 \% dissociation would give $0.220 \mathrm{~mol} \mathrm{dm}^{-3}$ Actual figure 1.038×10^{-5} $\mathrm{mol} \mathrm{dm}{ }^{-3}$ $\%$ dissociation $=$ $\begin{aligned} & \frac{1.038 \times 10^{-5} \times 100(1)}{0.220} \\ & =4.72 \times 10^{-3} \%(1) \end{aligned}$ Answer must be the 3 sig.figs Cq on $\left[\mathrm{H}^{+}\right]$(i)	If use 1.04×10^{-5} then get $4.73 \times 10^{-3} \%$		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (c)(i)		H^{+}in place of HCN		3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (c)(ii)	(A nucleophile is a) species that can donate a (lone) pair of electrons to form a covalent bond (1).	Just "species which attacks a postive $/ \delta^{+}$ site" A negative ion	$\mathbf{1}$	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (c)(iii)	Cyanide ion / CN^{-}(1)			$\mathbf{2}$
	HCN is a weak acid so CN^{-} removed CN^{-}reacts with H^{+} CN^{-}is a base so reacts with $\mathrm{H}^{+}(1)$	Equation and statement that equilibrium moves to LHS		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (d)	$\mathrm{CH} \mathrm{Cl}+\mathrm{KCN} \longrightarrow \mathrm{CH}_{3} \mathrm{CN}+\mathrm{KCl}$ OR $\mathrm{CH}_{3} \mathrm{Cl}+\mathrm{CN}^{-} \longrightarrow \mathrm{CH}_{3} \mathrm{CN}+\mathrm{Cl}^{-}$ $\mathbf{(1)}$ Ignore state symbols Nucleophilic substitution(1)			$\mathbf{2}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (e)	Allow Cl_{2} (1) Marking 1 mark for each of the three intermediate compounds $\begin{array}{ll} 5 \text { reagents } & =(3) \\ 3 \text { reagents } & =(2) \\ 2 \text { reagents } & =(1) \end{array}$ The reagent marks can only be awarded for parts of correct sequences	Other routes can score but they must go via a cyanide (in question) Correct route via a Grignard reagent to the acid chloride scores Max 5 (it does not answer the question actually asked) Allow Na /ethanol Or Hydrogen/ Ni In place of LiAlH_{4}		6

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(i)	Value of K will decrease (1) This mark is stand alone $\therefore\left[\mathrm{SO}_{3}\right]$ must decrease so that the fraction equals the new /lower K (1) Not stand alone			2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(ii) QWC	No change in value of K(1) This mark is stand alone the fraction gets smaller /decreases (because there are more molecules on the left) (1)			3
Equilibrium moves to the right (so that the fraction equals the value of K) so concentration of SO_{3} increases (1)				

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(iii)	No change in value of K (or in the value of the fraction) No change in equilibrium yield of $\mathrm{SO}_{3}(1)$	No change because catalysts only alter rate not yield OWTTE	$\mathbf{1}$	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)	Average KE of molecules increases/molecules move faster/molecules have more energy / (1) a greater fraction of collisions will have energy greater than activation energy(1) Greater proportion of collisions are successful (1)			$\mathbf{3}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (c)(i)	Temperature must be high enough to give a reasonable rate(1) Too high and yield would drop dramatically(1) e.g. High temp gives a low yield but low temp will slow the rate and so a compromise is chosen"(2)			$\mathbf{2}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (c)(ii)	Higher pressure not necessary as conversion $425^{\circ} \mathrm{C}$ and 2 atm is very high $/ \sim 98 \%(1)$ Ignore costs			$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (c)(iii)	Since reaction is exothermic the temperature will rise (1) Which would decrease the yield unless cooled (1)	Allow reference to equilibrium moving for second mark?		$\mathbf{2}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (d)(i)	$2 \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HNO}_{3} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NO}_{2}^{+}+2 \mathrm{HSO}_{4}$ OR $\begin{equation*} \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HNO}_{3} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{NO}_{2}^{+}+\mathrm{HSO}_{4} \tag{1} \end{equation*}$ OR both of: $\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HNO}_{3} \rightarrow \mathrm{H}_{2} \mathrm{NO}_{3}^{+}+\mathrm{HSO}_{4}^{-}$ then $\mathrm{H}_{2} \mathrm{NO}_{3}{ }^{+} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{NO}_{2}{ }^{+}$ OR $\mathrm{H}_{2} \mathrm{NO}_{3}^{+}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NO}_{2}^{+}+\mathrm{HSO}_{4}^{-}$			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (d)(ii)	The sulphuric acid is a stronger acid and so protonates the nitric acid OR Nitric acid is a weaker acid and so is protonated (1)			$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (d)(iii)	Mechanism 1 mark for arrow from ring on to N of the $\mathrm{NO}_{2}{ }^{+}$ 1 mark for intermediate with positive charge shown and delocalisation not extending over carbon attached to NO_{2} but covering the other carbons 1 mark for arrow from C-H bond into ring			3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (d)(iv)				

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publications@linneydirect.com
Order Code UA020841 January 2009

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

