## Mark Scheme Summer 2009

## CCE

## GCE Chemistry (8080/ 9080)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844576 0025, our GCSE team on 0844576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http:// www.edexcel.com/ Aboutus/ contact-us/

Alternately, you can speak directly to a subject specialist at Edexcel on our dedicated Science telephone line: 08445760037

Summer 2009
Publications Code UA021185
All the material in this publication is copyright
© Edexcel Ltd 2009

## Contents

1. 6241/ 01 Mark Scheme ..... 5
2. 6242/ 01 Mark Scheme ..... 17
3. 6243/01A Mark Scheme ..... 27
4. 6243/01A Materials ..... 32
5. 6243/01B Mark Scheme ..... 33
6. 6243/01B Materials ..... 38
7. 6243/01C Mark Scheme ..... 39
8. 6243/01C Materials ..... 44
9. 6243/ 02 Mark Scheme ..... 45
10. 6244/ 01 Mark Scheme ..... 51
11. 6245/ 01 Mark Scheme ..... 65
12. 6246/01A Mark Scheme ..... 75
13. 6246/01A Materials ..... 80
14. 6246/01B Mark Scheme ..... 81
15. 6246/01B Materials ..... 86
16. 6246/ 01C Mark Scheme ..... 87
17. 6246/ 01C Materials ..... 92
18. 6246/ 02 Mark Scheme ..... 93

## General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.


## Using the mark scheme

1 / means that the responses are alternatives and either answer should receive full credit.
2 () means that a phrase/ word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

3 [ ] words inside square brackets are instructions or guidance for examiners.
4 Phrases/ words in bold indicate that the meaning of the phrase or the actual word is
essential to the answer.
5 OWTTE means or words to that effect
$6 \mathrm{ecf} / \mathrm{TE} / \mathrm{cq}$ (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

## Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- show clarity of expression
- construct and present coherent arguments
- demonstrate an effective use of grammar, punctuation and spelling.

Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated "QWC" in the mark scheme BUT this does not preclude others.

| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 ( a )}$ | Similarity: same number of <br> protons OR same proton <br> number OR 7 protons (1) |  | Just "same atomic <br> number" <br> OR <br> Any mention of electrons <br> negates first mark | $\mathbf{2}$ |
|  | Difference: different <br> numbers of neutrons OR one <br> has 7 and the other has 8 <br> neutrons (1) | varying number of <br> neutrons | different mass number <br> OR different number of <br> nucleons |  |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 1 (b) | $\begin{aligned} & \hline 28,29 \text { and } 30 \\ & \mathrm{OR} \\ & +28,+29,+30 \\ & \mathrm{OR} \\ & 28 / 1,29 / 1,30 / 1 \\ & \mathrm{OR} \\ & 28: 1,29: 1,30: 1 \\ & \text { all } 3 \text { values correct }(2) \\ & \text { any } 2 \text { values correct }(1) \\ & \hline \end{aligned}$ | $28^{+}, 29^{+}, 30^{+}$ <br> OR $[28]^{+},[29]^{+},[30]^{+}$ <br> OR <br> ${ }^{28} \mathrm{~N}_{2}{ }^{+},{ }^{29} \mathrm{~N}_{2}{ }^{+},{ }^{30} \mathrm{~N}_{2}{ }^{+}$ all 3 correct (1) | If more than 3 values are given, deduct 1 mark for each additional incorrect value $\text { Eg 14, 15, 28, 29, } 30$ <br> scores (0) $14,28,29,30 \text { scores }(1)$ | 2 |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 ( c )}$ | ${ }_{7}^{14} N_{2}^{+} \quad$ (2) | $\left({ }_{7}^{14} N_{7}^{14} N\right)^{+}$ |  | $\mathbf{2}$ |
|  | N with 14 and 7 in correct <br> places (1) <br> 2 and (1) <br> IGNORE brackets |  |  |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 2 (a)(i) | 3 bond pairs and 1 lone pair <br> $\mathbf{( 1 )}$ <br> both needed for the mark |  |  | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 2 (a)(ii) | Shape: (trigonal) pyramidal <br> CONDITIONAL on 3bp and 1lp <br> in (i) (1) | any other type of <br> pyramidal | $\mathbf{2}$ |  |
|  | Angle: $100-107^{\circ}$ (1) <br> any number or range within <br> this range | If shape is trigonal <br> planar, allow $120^{\circ}$ <br> $(1)$ | just ‘less than $107^{\circ}$, |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 2 (a)(iii) | $\mathbf{1}^{\text {st }}$ mark <br> pairs of electrons as far <br> apart as possible to minimise <br> repulsion <br> OR <br> electron pairs repel to give <br> maximum separation <br> OR <br> electron pairs adopt a <br> position of minimum <br> repulsion (1) <br> IGNORE any specific number <br> of pairs of electrons <br> mentioned <br> electron pairs | atoms / bonds instead of <br> pairs of electrons | $\mathbf{2}$ |  |
| 2nd mark <br> lone pair-bond pair repulsion <br> greater (than bond pair-bond <br> pair which reduces the bond <br> angle) (1) | lone pairs repel <br> more than bond <br> pairs (1) <br> OR <br> lone pair has greater <br> repulsion (1) |  |  |  |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 2 (b) | $1^{\text {st }}$ mark <br> too much energy is needed to promote a 2 s electron on N to $3^{\text {rd }}$ energy level <br> OR <br> $N$ has no 2d orbitals <br> OR <br> N has no vacant orbitals in $2^{\text {nd }}$ energy level/ $2^{\text {nd }}$ energy level can hold max 8 electrons <br> OR <br> N cannot recoup the energy needed for electron promotion into next energy level/shell/orbit (1) <br> $2^{\text {nd }}$ mark <br> a 3s electron on $P$ can be <br> promoted into an empty 3d <br> orbital (so can form 5 covalent bonds) <br> OR <br> $P$ has vacant orbitals in $3^{\text {rd }}$ energy level <br> OR <br> P can expand outer shell to accept extra electrons / $3^{\text {rd }}$ energy level can hold 18 electrons <br> OR <br> P can recoup the energy needed for electron promotion (by forming 2 extra covalent bonds) <br> OR <br> $P$ is large enough to <br> accommodate 5 Cl (atoms) (1) | P can expand it's octet' | Any answer just based on: electronegativity difference, ions, dative covalent bonding (0) <br> N or P molecule loses 1 mark <br> N atom too small/smaller than $P$ <br> next orbital | 2 |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 2 (c)(i) | $1^{\text {st }}$ mark nitrogen has weaker dispersion / van der Waals' / London forces / induced dipole / instantaneous dipole (1) <br> $2^{\text {nd }}$ mark <br> due to fewer electrons (in the molecule) (1) conditional on $1^{\text {st }}$ mark or 'near miss from reject column for $1^{\text {st }}$ mark' | reverse argument for phosphorus allow stronger/greater van der Waals' etc <br> smaller electron cloud | any reference to dipoledipole, hydrogen bonds, ionic bonds or breaking covalent bonds loses both marks (0) <br> less/fewer/more van der Waals' etc OR van der Waals' bonds OR breaking bonds OR just 'weaker intermolecular forces' loses $1^{\text {st }}$ mark <br> smaller / lighter / lower mass molecule | 2 |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 2 (c)(ii) | $\mathbf{1}^{\text {st }}$ mark <br> ammonia has hydrogen <br> bonding (and dispersion <br> forces etc) (1) <br> $\mathbf{2}^{\text {nd }}$ mark <br> phosphine has dispersion / <br> van der Waals' / induced <br> dipole-dipole / London forces <br> (1) <br> IGNORE permanent dipole- <br> dipole |  | 3 |  |
|  | $3^{\text {rd }}$ mark <br> hydrogen bonding is stronger <br> so more energy /heat is <br> needed (to overcome <br> hydrogen bonding than <br> dispersion / van der Waals' <br> forces) (1) | allow 3 <br> if phosphine has <br> permanent dipole- <br> dipole forces in 2 | mark <br> mark | loses 3rd mark only |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3}$ (a)(i) | $\mathrm{KCl}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{KHSO}_{4}+\mathrm{HCl}$ | multiples |  | $\mathbf{1}$ |
|  | OR <br> $2 \mathrm{KCl}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{HCl}$ <br> $\mathbf{( 1 )}$ <br> IGNORE any state symbols |  |  |  |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 3 (a)(ii) | hydrogen bromide / HBr bromine / $\mathrm{Br}_{2}$ sulphur dioxide $/ \mathrm{SO}_{2}$ <br> all three correct (2) any two correct (1) |  | Br <br> if more than 3 given, deduct 1 mark for each additional incorrect gas but IGNORE steam / water | 2 |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3}$ (a)(iii) | redox (reaction) <br> OR <br> reduction and oxidation <br> OR <br> reduction of sulphuric acid / <br> $\mathrm{H}_{2} \mathrm{SO}_{4}$ <br> OR <br> oxidation of bromide <br> (ion) $/ \mathrm{Br} / \mathrm{hydrogen}$ <br> bromide $/ \mathrm{HBr}(1)$ | acid-base both <br> needed for the mark | just 'reduction' or <br> oxidation' on their own <br> displacement <br> disproportionation | $\mathbf{1}$ |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 3 (a)(iv) | FIRST ALTERNATIVE <br> $1^{\text {st }}$ mark <br> hydrogen bromide/ HBr is a <br> better reducing agent (than <br> HCl ) <br> OR <br> more readily oxidised <br> $2^{\text {nd }}$ mark <br> HBr bond weaker (than HCl bond) <br> OR <br> Br larger than $\mathrm{Cl} /$ outer shell is further from nucleus <br> OR <br> donates/loses outer electron more easily (1) <br> SECOND ALTERNATIVE <br> $1^{\text {st }}$ mark <br> bromide ions / $\mathrm{Br}^{-}$are better reducing agents <br> OR <br> more readily oxidised (than <br> $\mathrm{Cl}^{-}$) <br> $2^{\text {nd }}$ mark <br> Br larger/outer shell is further from nucleus(than $\mathrm{Cl}^{-}$ ) <br> OR <br> donate/lose outer electrons more easily (than chloride <br> ions) (1) | reverse argument for chloride <br> THIRD <br> ALTERNATIVE <br> $1^{\text {st }}$ mark <br> $\mathrm{HBr} / \mathrm{Br}^{-}$larger (than <br> $\mathrm{HCl} / \mathrm{Cl}^{-}$) (1) <br> $2^{\text {nd }}$ mark <br> donates/loses outer <br> electron more easily <br> (1) | Cl" ions are stronger oxidising agents than $\mathrm{Br}^{-}$ negates first mark <br> Just 'bromides are larger than chlorides' | 2 |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3 ~ ( b ) ( i ) ~}$ | B (1) |  |  | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3}$ (b)(ii) | C (1) |  |  | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 4 (a) | $\left(1 s^{2}\right) 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2}$ | $1 s^{2}$ repeated <br> subscripts <br> capitals <br> $p_{x}{ }^{2} p_{y}{ }^{2} p_{z}{ }^{2}$ for $p^{6}$ |  | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 4 (b)(i) | Type <br> metallic (1) <br> Explanation <br> attraction/attractive force <br> (1) | (force/bonding <br> between' if used instead <br> of 'attraction' <br> between Ca² and <br> (surrounding) sea of <br> electrons / delocalised <br> electrons (1) <br> Stand alone marks | cations / positive <br> ions / calcium ions | atoms / nuclei /ions <br> protons |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{4 ~ ( b ) ( i i ) ~}$ | electrons are mobile / free <br> to move /can flow (under an <br> applied potential) (1) |  | 'free' on its own <br> OR <br> carry the charge | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 4 (c)(i) | Any two from: <br> calcium 'bobs up and down' <br> / sinks (1) <br> effervescence / fizzing / <br> bubbles (1) <br> solution goes cloudy/milky <br> OR <br> (white) solid / ppt / <br> suspension (1) | floats <br> melts <br> ignites <br> pops <br> moves on water <br> just 'gas evolved' | 2 |  |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 4 (c)(ii) | amount (mol) $\begin{align*} C a & =\frac{2.5}{40} \\ & =0.0625 \tag{1} \end{align*}$ <br> vol $\mathrm{H}_{2}=24 \times 0.0625$ $=1.5 \mathrm{dm}^{3}(1)$ <br> conseq on their mol <br> OR <br> 40 g Ca produces $24 \mathrm{dm}^{3} \mathrm{H}_{2}$ <br> (1) <br> so 2.5 g Ca produces $\frac{24 \times 2.5}{40}$ $=1.5 \mathrm{dm}^{3} \mathrm{H}_{2}(1)$ <br> unit is essential | $1500 \mathrm{~cm}^{3}$ | incorrect units eg dm ${ }^{-3}$, $\mathrm{mol} \mathrm{dm}{ }^{-3}, \mathrm{dm}^{3} \mathrm{~mol}^{-1}$ <br> incorrect units eg dm ${ }^{-3}$, $\mathrm{mol} \mathrm{dm}{ }^{-3}, \mathrm{dm}^{3} \mathrm{~mol}^{-1}$ | 2 |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 4 (d)(i) | $\begin{aligned} & \mathrm{Ca}^{+}(\mathrm{g}) \rightarrow \mathrm{Ca}^{2+}(\mathrm{g})+\mathrm{e}^{(-)} \\ & \text {equation }(1) \\ & \text { state symbols }(1) \text { conditional } \\ & \text { on correct calcium species } \\ & \mathrm{OR} \\ & \mathrm{Ca}^{+}(\mathrm{g})-\mathrm{e}^{(-)} \rightarrow \mathrm{Ca}^{2+}(\mathrm{g}) \\ & \text { equation }(1) \\ & \text { state symbols }(1) \text { conditional } \\ & \text { on correct calcium species } \end{aligned}$ | ```\(\mathrm{Ca}^{+}(\mathrm{g})+\mathrm{e}^{(-)} \rightarrow\) \(\mathrm{Ca}^{2+}(\mathrm{g})+2 \mathrm{e}^{(-)}\) equation (1) state symbols (1) conditional on correct calcium species OR a completely correct general equations including state symbols eg \(M^{+}(\mathrm{g}) \rightarrow M^{2+}(\mathrm{g})+\) \(\mathrm{e}^{(-)}(1)\)``` |  | 2 |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject |  |
| :--- | :--- | :--- | :--- | :--- |
| 4 (d)(ii) | I.E decreases (down the <br> group) (1) - stand alone <br> EITHER <br> outer electron further from <br> the nucleus / electron in <br> higher energy level / ionic <br> radius increases (1) | atomic radius <br> increases <br> and electron better shielded <br> / more (inner) shells of <br> electrons (1) <br> (more than) offsets larger <br> nuclear charge / more <br> protons (1) |  |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 5 (a)(i) | $4 \mathrm{LiNO}_{3} \rightarrow 2 \mathrm{Li}_{2} \mathrm{O}+4 \mathrm{NO}_{2}+\mathrm{O}_{2}$ <br> all species correct (1) <br> balancing (1) conditional on <br> all correct species <br> $2 \mathrm{NaNO}_{3} \rightarrow 2 \mathrm{NaNO}_{2}+\mathrm{O}_{2}$ <br> correct species and balancing <br> (1) <br> IGNORE any state symbols |  |  | $\mathbf{3}$ |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 5 (a)(ii) | $1^{\text {st }}$ mark <br> Trend: <br> (thermal stability) increases/ nitrates decomposes less readily (down the group) OR <br> (thermal stability) <br> decreases/nitrates <br> decompose more readily up <br> the group (1) <br> If this mark is not awarded, $2^{\text {nd }}$ and $3^{\text {rd }}$ marks can still <br> score <br> Explanation: <br> Can be answered in terms of specific ions or down or up the group $2^{\text {nd }}$ mark <br> sodium ion and lithium ion have same charge <br> OR group 1 ions have the same charge (1) <br> $3^{\text {rd }}$ mark <br> sodium ion is larger than lithium ion <br> OR <br> lithium ion is smaller than sodium ion <br> OR group 1 ions increase in size down the <br> group/decrease in size up the group (1) <br> $4^{\text {th }}$ mark <br> sodium / larger ion causes less polarisation / distortion of nitrate (ion) / $\mathrm{NO}_{3}^{-} /$anion / negative ion <br> OR <br> lithium / smaller ion causes more polarisation / distortion of nitrate (ion) / $\mathrm{NO}_{3}^{-}$/ anion / negative ion (1) | $\mathrm{Na}^{+}$is larger than $\mathrm{Li}^{+}$ scores $2^{\text {nd }}$ and $3^{\text {rd }}$ marks <br> sodium is larger ... if ion is stated for $2^{\text {nd }}$ mark | just 'lithium ion has a higher charge density' for the $2^{\text {nd }}$ mark <br> elements get larger .... <br> just ' $\mathrm{NO}_{3}{ }^{2-6}$ <br> OR <br> any other incorrect formula for nitrate | 4 |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 5 (b)(i) | $\begin{aligned} & \text { amount }(\mathrm{mol}) \mathrm{Na}_{2} \mathrm{O}_{2}=\frac{1.0}{78} \\ & \qquad=0.0128(1) \\ & \text { amount (mol) Na needed }= \\ & 0.0128 \times 2=0.0256(1) \\ & \text { mass } \mathrm{Na} \text { needed }=0.0256 \mathrm{x} \\ & 23=0.59 \mathrm{~g}(1) \\ & \text { penalise incorrect unit } \\ & \text { mark consequentially } \\ & \mathrm{OR} \\ & 78 \mathrm{~g}(1) \text { of } \mathrm{Na}_{2} \mathrm{O}_{2} \text { produced } \\ & \text { from } 46 \mathrm{~g} \mathrm{Na}(1) \\ & 1.0 \mathrm{~g} \mathrm{Na} \mathrm{Na}_{2} \text { produced from } \frac{46}{78} \\ & \quad=0.59 \mathrm{~g}(1) \end{aligned}$ | allow 2 or more s.f. in (i) and (ii) but only penalise 1 s.f. once |  | 3 |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 5 (b)(ii) | amount $(\mathrm{mol}) \mathrm{NaOH}=2 \mathrm{x}$ 78 g of $\mathrm{Na}_{2} \mathrm{O}_{2}$ gives 2 <br>  $0.0128=0.0256 / 0.026(1)$ <br> conseq on (i)mol NaOH <br> so $1 \mathrm{~g} \mathrm{gives} 2 / 78=$ <br> $0.026 \mathrm{~mol}(1)$ |  | 1 |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 5 (b)(iii) | conc $\mathrm{NaOH}=\frac{0.0256 \times 1000}{50.0}$  <br> conseq on (ii)  <br> their answer, based on a  <br> lalculation involving moles  <br> and volume, to 2 sf  <br> from 0.0256: 0.51  <br> OR  <br> from $0.026: ~$ $0.52\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ <br> (1)  |  | $\mathbf{2}$ |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 6 (a) | $\mathrm{KIO}_{4}(+) 7$ OR VII (1) | $7+$ |  | $\mathbf{2}$ |
|  | $\mathrm{I}_{2} \mathrm{O}_{5}(+) 5$ OR V (1) | $5+$ |  |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{6 ( b ) ( i )}$ | $2 I^{-} \rightarrow \mathrm{I}_{2}+2 \mathrm{e}^{(-)}$ | multiples or half | 2 l | $\mathbf{1}$ |
|  | OR |  |  |  |
|  | $2 I^{-}-2 \mathrm{e}^{(-)} \rightarrow \mathrm{I}_{2} \quad(1)$ |  |  |  |
| IGNORE any state symbols |  |  |  |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{6 ~ ( b ) ( i i ) ~}$ | $2 \mathrm{IO}_{3}^{-}+12 \mathrm{H}^{+}+10 \mathrm{e}^{(-)} \rightarrow \mathrm{I}_{2}$ <br> $+6 \mathrm{H}_{2} \mathrm{O}$ <br> correct LHS (1) <br> correct RHS (1) <br> IGNORE any state symbols | multiples or half <br> if only error 10e <br> on wrong side (1) | $\mathbf{2}$ |  |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 6 (b)(iii) | $\begin{aligned} & \mathrm{IO}_{3}^{-}+5 \mathrm{I}^{-}+6 \mathrm{H}^{+} \rightarrow 3 \mathrm{I}_{2}+3 \mathrm{H}_{2} \mathrm{O} \\ & \mathrm{OR}^{2} \\ & 2 \mathrm{IO}_{3}^{-}+1 \mathrm{II}^{-}+12 \mathrm{H}^{+} \rightarrow 6 \mathrm{I}_{2}+ \\ & 6 \mathrm{H}_{2} \mathrm{O} \\ & \text { (1) stand alone } \end{aligned}$ <br> conditional on (i) correct and consequential on(ii) PROVIDED there are electrons on correct sides in both half-equations and correct species IGNORE any state symbols | multiples or half |  | 1 |

6242/01

| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 1 (a)(i) | $\triangle$ Hreaction $=\sum \triangle H_{\text {fproducts }}-\sum \triangle$ $\mathrm{H}_{\mathrm{f} \text { reactants }}$ <br> Or $\begin{aligned} & =[4 \times 90.4+6 \times-242]-[4 \times \\ & -46.2](1) \\ & =-905.6 /-906\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)(1) \end{aligned}$ <br> correct answer without <br> working scores (2) <br> incorrect answer without <br> working scores (0) <br> correct answer with any other units scores (1) $(+) 905.6 /(+) 906\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ <br> scores (1) <br> Any answer omitting just one stoichiometric factor scores <br> (1) $-1176.8,(+) 304.4,-1044.2$ <br> Any answer omitting more than one stoichiometric factor scores (0) e.g. -105 kJ $\mathrm{mol}^{-1}$ | $\triangle$ Hreaction $=$ products-reactants kJ 3 or 4 s.f. |  | 2 |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ (a)(ii) | $\mathrm{H}_{2} \mathrm{O}$ is not most stable/ <br> standard state (under <br> standard conditions) <br> Or combustion is not <br> complete <br> Or Involves 4/ more than 1 <br> mol NH (1) | Water should be in <br> liquid state | Just "Not standard <br> conditions" | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ (a)(iii) | (Reaction is exothermic \&) <br> heat/ energy produced can <br> maintain catalyst <br> temperature (1) | Just "Reaction is <br> exothermic" | $\mathbf{1}$ |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ (b)(i) | Platinum / Pt (-rhodium / Rh <br> alloy) (1) |  | Mention of Rb (0) | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ (b)(ii) | Catalyst does not affect <br> position of equilibrium (1) <br> Ignore references to rate of <br> forward and reverse <br> reactions increasing equally | No effect / none |  | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ (c)(i) | Peak to the right and lower <br> (1) <br> higher temperature <br> asymptote approaches xaxis <br> above that of the lower <br> temperature (asymptote) (1) | High temperature curve <br> - turns up at end <br> - flattening off <br> significally above low <br> temperature curve <br> - cuts low temperature <br> curve again | $\mathbf{2}$ |  |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 1 (c)(ii) | First mark <br> (Average) molecular (kinetic) energy/ speed increases (1) <br> Second mark <br> Number of/ proportion of/ more molecules/ collisions with E>Ea increases OR reference to graph (1) <br> Third mark <br> proportion of collisions with sufficient energy for reaction increases (1) <br> Award third mark only if second mark awarded unless penalising "atoms" | Particles for molecules <br> Particles for molecules <br> More of the collisions are effective(1) Or More successful collisions per second | Atoms/ reactants <br> Just "more with enough energy to react" Atoms/ reactants (penalise once only) <br> Just 'more successful collisions' | 3 |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ (c)(iii) | First mark <br> Equilibrium moves to the left <br> (1) | More reactants or <br> less products formed <br> (at equilibrium) | Second mark <br> Because reaction is <br> exothermic (1) <br> No CQ on incorrect <br> calculation in (a) (i) <br> reaction is <br> endothermic <br> Allow "endothermic <br> reaction is <br> favoured" | Just "endothermic side" <br> Just "reverse reaction is <br> favoured" <br> Second mark is conditional |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ (c)(iv) | First mark <br> Equilibrium moves to the left <br> (1) | More reactants or <br> less products formed <br> (at equilibrium) <br> More moles (of gas) <br> on RHS / less on LHS |  | $\mathbf{2}$ |
| Second mark <br> Because 9 mol (of gas) on <br> LHS and 10 mol on RHS (1) | Second mark is conditional <br> on first mark |  |  |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ (d)(i) | The enthalpy change when 1 <br> mole of water is produced <br> (1) | "Heat / heat energy <br> / energy" instead of <br> "enthalpy" <br> "released" instead <br> of "change" | 'Required' instead of <br> "change" | $\mathbf{2}$ |
| by the reaction between an <br> acid/ sulphuric acid $/ \mathrm{H}^{+}$and <br> an alkali/ ammonia $/ \mathrm{OH}^{-}(1)$ <br> (Ignore references to <br> standard conditions <br> / concentrations) | Allow base for alkali <br> provided that <br> "solution/ stated <br> concentration" in <br> answer |  |  |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ (d)(ii) | $2 \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ <br> or <br> $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{NH}_{4} \mathrm{HSO}_{4}$ <br> Correct formulae of $\mathrm{NH}_{3}$, <br> $\mathrm{H}_{2} \mathrm{SO}_{4}$ and ammonium salt(1) <br> balanced equation(1) | Equations involving <br> $\mathrm{NH}_{4} \mathrm{OH}$ | Equations including <br> ionic salt <br> $\mathrm{H}^{+}+\mathrm{NH}_{3} \rightarrow \mathrm{NH}_{4}^{+}$ <br> scores (2) | $\mathbf{2}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2 ~ ( a ) ( i ) ~}$ | Sodium chloride / NaCl (1) |  | salt | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 2 (a)(ii) | 1. Chlorine or $\mathrm{Cl}_{2}(1)$ <br> 2. Hydrogen or $\mathrm{H}_{2}$ (1) <br> 3. Sodium hydroxide <br> (solution) or $\mathrm{NaOH}(1)$ | $\mathrm{Cl}_{2}$ and $\mathrm{H}_{2}$ reversed <br> scores 1 out of the 2 | Cl $\mathbf{H}$ |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2 ~ ( a ) ( i i i ) ~}$ | $2 \mathrm{NaCl}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathrm{Cl}_{2}+$ <br> $\mathrm{H}_{2}$ <br> Species (1) <br> balance (1) (no CQ on <br> incorrect species) | $2 \mathrm{Cl}^{-}+2 \mathrm{H}_{2} \mathrm{O} \quad 2 \mathrm{OH}^{-}+\mathrm{Cl}_{2}+\mathrm{H}_{2}$ <br> Allow 2 Na <br> ions as spectator <br> multiples | $2 \mathrm{H}^{+}+2 \mathrm{Cl}^{-} \quad \mathrm{H}_{2}+\mathrm{Cl}_{2}$ | $\mathbf{2}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2 ~ ( a ) ( i v ) ~}$ | Recycled (and more NaCl is <br> added to restore <br> concentration) (1) | Re-used | $\mathbf{1}$ |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2 ( b ) ( i )}$ | $2 \mathrm{Cl}^{-} \rightarrow \mathrm{Cl}_{2}+2 \mathrm{e}^{-}(1)$ | $2 \mathrm{Cl}^{-}-2 \mathrm{e}^{-} \rightarrow \mathrm{Cl}_{2}$ <br> $\mathrm{Cl}^{-} \rightarrow \mathrm{Cl}+\mathrm{e}^{-}$and <br> $2 \mathrm{Cl} \rightarrow \mathrm{Cl}_{2}$ <br> e for $\mathrm{e}^{-}$ | $\mathrm{Cl}^{-} \rightarrow \mathrm{Cl}+\mathrm{e}^{-}$alone <br> $2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \mathrm{H}_{2}$ | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2 ~ ( b ) ( i i ) ~}$ | Oxidation because electrons <br> are lost <br> (award mark only if $\mathrm{Cl}^{-}$on <br> left in b(i)) <br> OR oxidation number of <br> chlorine increases / goes <br> from -1 to zero (1) (must be <br> consistent with oxidation <br> shown in b(i)) |  | Oxidation alone | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2 ( c ) ( i )}$ | Sodium (ions) / $\mathrm{Na}^{+}(1)$ | Hydrogen (ions) $/ \mathrm{H}^{+}$ <br> OR cations | Na <br> $\mathrm{H} / \mathrm{H}_{2}$ | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2 ( c ) ( i i )}$ | Sodium chlorate(I)/ NaOCl / <br> NaClO (1) | Sodium hypochlorite | Sodium chlorate/ $\mathrm{NaClO}_{3}$ | $\mathbf{1}$ |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 2 (d) | Any 2 of <br> Water treatment <br> Or <br> Disinfecting/sterilising <br> swimming pools <br> (as a ) bleach/ bleaching <br> paper/ bleaching wood pulp <br> in the manufacture of <br> bleach <br> disinfectants <br> HCl <br> poly(chloroethene) <br> solvents <br> herbicides <br> pesticides <br> trichloromethane <br> tetrachloromethane <br> high purity silicon <br> dichloromethane <br> CFC's <br> extraction of bromine / $\mathrm{Br}_{2}$ | PVC <br> chloroform <br> carbon tetrachloride <br> methylene chloride <br> Freons/ Halons | Just "as a disinfectant" <br> Water purification <br> J ust " paper manufacture <br> Removes bromine Br | 2 |


| Question Number | Correct Answer |  |  |  | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 (a)(i) |  |  |  |  | \%calculation: <br> formula mass of $\begin{aligned} & \mathrm{C}_{2} \mathrm{H}_{5}=29 \\ & \% \mathrm{C}=100 \times 24 \div 29 \\ & =82.8 \end{aligned}$ |  | 2 |
|  |  | C | H |  |  |  |  |
|  | \% | 82.8 | 17.2 |  |  |  |  |
|  | Moles | $\begin{aligned} & 82.8 \div 12 \\ & =6.9 \end{aligned}$ | $\begin{aligned} & 17.2 \div 1 \\ & =17.2 \end{aligned}$ | (1) |  |  |  |
|  | Ratio | $\begin{aligned} & \text { 6.9/6.9 } \\ & : \\ & 1: \\ & 2: \end{aligned}$ | $\begin{aligned} & 17.2 / 6 . \\ & 9 \\ & 2.49 \\ & 5 \end{aligned}$ | (1) |  |  |  |
|  | Either division through by 6.9 or the ratio of 1:2.49/1:2.5 must be shown to score second mark |  |  |  |  |  |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3 ~ ( a ) ( i i ) ~}$ | (formula mass of) $\mathrm{C}_{2} \mathrm{H}_{5}=29$ <br> $(=58 \div 2)(1)$ <br> $\mathrm{C}_{4} \mathrm{H}_{10}(1)$ standalone |  |  | $\mathbf{2}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3 ~ ( a ) ( i i i ) ~}$ | Alkanes |  | Alkene(s) | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3}$ (a)(iv) |  |  |  |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3 ~ ( b ) ( i ) ~}$ | (Free) radical (1) <br> substitution (1) |  |  | $\mathbf{2}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3}$ (b)(ii) | Ultraviolet / UV (light) (1) | Sunlight or daylight <br> or white light | Just "Light" or <br> Just "heat" | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3}$ (c)(i) | Nucleophilic substitution (1) <br> both words needed |  |  | $\mathbf{1}$ |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 3 (c)(ii) |  <br> Tertiary (1) standalone | "-OH" for "-O-H" $\begin{equation*} 3 \div / 3^{y} \tag{1} \end{equation*}$ | $\mathrm{CH}_{3}$ on structural formulae $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$ | 2 |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3}$ (d)(i) | Ethanolic / alcoholic <br> (solution) (1) | Alcohol / ethanol <br> solvent <br> or in alcohol <br> /ethanol <br> Anhydrous ethanol | Just "(in presence <br> of)ethanol" / "alcohol" | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3}$ (d)(ii) | (Nucleophilic) Elimination (1) | Dehydrohalogenation | Dehydration <br> Incorrect reagent <br> descriptions e.g. <br> electrophilic <br> (elimination) | $\mathbf{1}$ |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 4 (a)(i) | Penalise use of "FI" once only in (i) and (ii) |  |  | 1 |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 4 (a)(ii) |  <br> 4 carbons with 8 fluorines(1) Continuation Bonds at each end (1) standalone (ignore brackets around repeating units and $n$ ) | Allow CQ on a trifluoroethene monomer only | Any polymer with a double bond between carbons scores 0 <br> Just -C-C-C-C- does not score continuation bonds mark | 2 |


| Question Number | Correct Answer |  | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4 (a)(iii) | Score 1 for correct use or property; second mark for property linked to given use |  |  | J ust saucepans \& frying pans | 2 |
|  | Use (1) | Property (1) |  |  |  |
|  | (non-stick) Coating for saucepans / frying pans/ garden tools | Low (coefficient of) friction or slippery |  |  |  |
|  | Valves / <br> Bearings/ gears/ bushes/ (burette) taps | Low (coefficient <br> of) friction or resistant to chemical attack |  |  |  |
|  | printed circuit boards | Electrical Insulator |  |  |  |
|  | Plumber's tape | Flows under compression or water repellent |  | Waterproof |  |
|  | Waterproof/ Gore-tex linings for boots/ jackets/ socks | Water repellent |  | Waterproof |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 4 (b)(i) |  |  |  |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{4 ~ ( b ) ( i i ) ~}$ | Restricted rotation about <br> C C/ $\pi$ bond | Barrier to free <br> rotation about <br> C C/ $\pi$ it <br> No rotation about <br> C C/ $\pi$ it |  | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{4}$ (b)(iii) | 1,1-difluoroethene has two <br> identical groups/ atoms <br> attached to the same carbon <br> (while 1,2 difluorethene does <br> not) | 1,2-difluoroethene <br> has two different <br> groups/ atoms <br> attached to each C <br> atom (while 1,1- <br> difluoroethene does <br> not )(1) |  | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{4}$ (c)(i) | $\mathrm{CH}_{2} \mathrm{CF}_{2}+\mathrm{H}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{CHF}_{2}$ (1) <br> OR Full structural formulae <br> Do NOT penalise use of Fl for <br> fluorine |  | $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{~F}_{2}+\mathrm{H}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{~F}_{2}$ | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{4}$ (c)(ii) | (Very similar because) <br> all (three) reactions involve <br> breaking a C C / $\pi$ bond and <br> an H H (1) <br> and forming 2 C H (1) | Same bonds broken <br> and formed (1) out <br> of the first two | Both involve <br> breaking C $=$ C/ $\pi$ <br> bond and forming C- <br> bond enthalpies are similar <br> (in the different compounds) <br> (1) standalone | Energies of bonds same |$\quad$|  |
| :--- |

## 6243/01A

| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ (a) | Observation <br> Inference <br> $\mathrm{K}^{+}(\mathbf{1 )}$ | Lilac(1) | Potassium / | Mauve / purple | K alone |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 ( b ) ( i )}$ | Observations <br> Yellow precipitate (1) <br> Insoluble (in $\mathrm{NH}_{3}$ )(1) <br> Inference Iodide / I (1) |  | Iodine / I <br> /iodine ion alone |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 ( b ) ( i i )}$ | Observations <br> Brown (solution)(1) <br> Blue / Black / Blue-Black(1) <br> Inference $\quad$ lodine / $\mathrm{I}_{2}(1)$ | Orange / yellow |  | $\mathbf{3}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 ~ ( b ) ( i i i ) ~}$ | $\mathrm{Cl}_{2}+2 \mathrm{l}^{\circ} \div 2 \mathrm{Cl}^{-}+\mathrm{I}_{2}$ (1) <br> $[$ Ignore state symbols $]$ |  |  | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}(\mathbf{c )}$ | Black solid / purple vapour/ <br> yellow solid / steamy fumes <br> / misty / cloudy fumes | Fizzing / <br> effervesence | Identity of products eg <br> iodine <br> Bad egg smell <br> White smoke | $\mathbf{1}$ |


|  | Correct Answer |  |  |  |  |  |  | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2 ( b ) ( \mathbf { i } )}$ | $\frac{4.50}{90.0}=0.0500\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ <br> If units given must be <br> mol dm <br> Penalise once only |  | $\mathbf{1}$ |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2 ( b ) ( i i )}$ | $\underline{25.0} \times 0.050$ <br> $=1.25 \times 10^{-3} / 0.00125(m o l)$ <br> If units given must be moles. | Cq on (i) | 0.0013 | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2 ( b ) ( i i i )}$ | $1.25 \times 10^{-3} \times 2=2.50 \times 10^{-3}$ <br> $(\mathrm{~mol})$ <br> If units given must be moles. | Cq on (ii) |  | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 2 (b)(iv) | $2.50 \times 10^{-3} \times \frac{1000}{\text { Mean titre }}$ <br> $=$ concentration (mol dm <br> ) | Cq on (ii) |  | $\mathbf{1}$ |
| Answer to 3SF. If units given <br> must be mol dm |  |  |  |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 2 (c)(i) | It will halve it <br> OR candidates mean titre <br> divided by 2 |  |  | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 2 (c)(ii) | Less accurate because <br> greater percentage/relative <br> error |  |  | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3 ~ ( a ) ~}$ | Table 2 <br> Full set of temperature <br> readings (1) <br> Readings to whole degree (1) <br> (Penalise once only) <br> $[\checkmark \vee$ Bottom RHS of Table 2] |  |  | $\mathbf{2}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3 ~ ( b ) ~}$ | Graph <br> Temperature(y) scale -2 cm <br> at least $10^{\circ}$ and allows for <br> extrapolation if necessary (1) <br> All points correctly plotted <br> (1) |  |  | $\mathbf{2}$ |


| Question Number | Correct Answer |  |  |  | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 (c)(i) | Correct extrapolation to 3 minutes (1) <br> $\Delta T$ correctly follows from working (1) <br> Accuracy <br> Compare candidate's $\Delta T$ (corrected if necessary) with examiner's $\Delta T$. <br> Examiner's $\Delta \mathrm{T}=25^{\circ} \mathrm{C}$ <br> Show difference on script as $\mathrm{d}=$ <br> Award accuracy marks as follows |  |  |  | If no graph, $\Delta T=T_{\text {MAX }}-T_{\text {MIN }}$ for accuracy |  | 5 |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :---: | :--- | :--- |
| 3 (c)(ii) | $\frac{50 \times 0.50}{1000}=0.025$ | Answer only |  | 1 |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 3 (c)(iii) | $50 \times 4.18 \times \Delta \mathrm{T}$ J <br> OR <br> $\frac{50 \times 4.18 \times \Delta \mathrm{T}}{1000}$ <br> $[$ Cq on $\Delta \mathrm{T}$. Ignore sign $]$ | Answer only with <br> units |  | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3}$ (c)(iv) | Answer to (c)(iii) (1) <br> Answer to (c)(ii) <br> Answer to 2 SF only and kJ <br> mol $^{-1}$ (1) <br> Negative sign ONLY-award $_{\text {independently.(1) }}$ | Answer cq on (c)(ii) <br> and (iii) | Answers that do not <br> follow heat method. <br> moles | $\mathbf{3}$ |


| Question <br> Number | Correct Answer | Acceptable <br> Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3}$ (d) | $\mathrm{CuSO}_{4}$-higher concentration . |  | More/increase <br> volume CuSO <br> 4 | $\mathbf{1}$ |
| More zinc. |  |  |  |  |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 4 | ${ }^{1} \checkmark \quad$ Add Zn to $\mathrm{CuSO}_{4}$ (and stir) until blue colour disappears / reaction ends <br> $2 \checkmark$ Add $\mathrm{H}_{2} \mathrm{SO}_{4}$ to mixture. <br> ${ }^{3} \checkmark$ Until no more bubbles / reaction ends <br> $4 \checkmark \quad$ Filter off Cu. Wsh Cu and dry (until constant mass) <br> $5 \checkmark$ Weigh Cu <br> ${ }^{6} \checkmark$ Moles $\mathrm{Cu}=\frac{\text { mass } \mathrm{Cu}}{63.5}$ <br> $7 \checkmark \mathrm{Conc}^{\mathrm{n}} \mathrm{CuSO}_{4}=\operatorname{moles} \mathrm{Cu}\left(\mathrm{SO}_{4}\right) \times \frac{1000}{50}$ <br> $\checkmark^{6} \checkmark$ Stand alone <br> OR <br> ${ }^{1} \checkmark$ Weigh Zn <br> $2 \checkmark \quad$ Add Zn to $\mathrm{CuSO}_{4}$ and stir until blue colour disappears. <br> $3 \checkmark$ Add $\mathrm{H}_{2} \mathrm{SO}_{4}$ to mixture. <br> ${ }^{4} \checkmark$ When no more bubbles / reaction ends measure volume $\mathrm{H}_{2}$. <br> ${ }^{5} \checkmark \quad$ Volume $\mathrm{H}_{2}=$ moles $\mathrm{H}_{2}$ $24,000$ <br> $6 \checkmark$ Moles $\mathrm{H}_{2}=$ moles Zn in excess <br> and mass Zn at start $=$ moles Zn at start 65.4 <br> moles Zn that displace Cu <br> $=$ moles Zn at start - moles Zn in excess <br> 7 Moles Zn that displace Cu <br> $=$ moles $\mathrm{CuSO}_{4}$ <br> $\mathrm{Conc}^{\mathrm{n}} \mathrm{CuSO}_{4}=$ moles $\mathrm{CuSO}_{4} \times \frac{1000}{50}$ <br> ${ }^{5} \checkmark^{6} \checkmark^{7} \checkmark$ Stand alone |  |  | 7 |

Group 1 (6243/01A): This practical test must be taken on the day specified on the official timetable, and is available to Home Centres, International Teaching Institutions and International Centres.

## Apparatus and Materials

## Apparatus

Each candidate will require:

1. two test tubes and one boiling tube in a test tube rack;
2. apparatus and materials for carrying out a flame test;
3. one $10 \mathrm{~cm}^{3}$ measuring cylinder;
4. a supply of dropping pipettes;
5. spatula;
6. $50.0 \mathrm{~cm}^{3}$ burette, in stand and clamp, with small funnel for filling;
7. small beaker for draining burette;
8. $\quad 25.0 \mathrm{~cm}^{3}$ pipette and safety filler;
9. white tile;
10. two $250 \mathrm{~cm}^{3}$ conical flasks;
11. expanded polystyrene cup held securely in a $250 \mathrm{~cm}^{3}$ beaker;
12. one $50 \mathrm{~cm}^{3}$ or $100 \mathrm{~cm}^{3}$ measuring cylinder;
13. timer;
14. a thermometer, range $0-100^{\circ} \mathrm{C}$ (or similar), graduated in $1.0^{\circ} \mathrm{C}$ intervals or a thermometer that can be read to an accuracy of at least $1.0^{\circ} \mathrm{C}$.

## Materials

Each candidate will require:
(a)* 1.0 g of potassium iodide in a stoppered tube labelled $\mathbf{A}$. The identity of this compound is not to be disclosed to candidates;
(b) * $200 \mathrm{~cm}^{3}$ of aqueous sodium hydroxide of concentration $0.0975 \mathrm{~mol} \mathrm{dm}^{-3}$ labelled Solution B. The concentration of this solution is not to be disclosed to candidates.
(c)* $200 \mathrm{~cm}^{3}$ of aqueous ethanedioic acid of concentration $0.0500 \mathrm{~mol} \mathrm{dm}^{-3}$ labelled Solution $\mathbf{C}$ [this may be prepared by dissolving 6.30 g of solid ethanedioic acid dihydrate, $(\mathrm{COOH})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ per dm${ }^{3}$ of solution. Candidates will be given the mass of the anhydrous acid per $\mathrm{dm}^{3}$ of solution.l:
(d) * $70 \mathrm{~cm}^{3}$ of aqueous copper(II) sulphate of concentration $0.50 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ labelled $\mathbf{D}$;
(e) * between 2.4 g and 2.5 g of powdered zinc in a stoppered container labelled zinc;
(f) $2 \mathrm{~cm}^{3}$ of dilute nitric acid; concentration approximately $2.0 \mathrm{~mol} \mathrm{dm}^{-3}$;
(g) $2 \mathrm{~cm}^{3}$ of dilute hydrochloric acid; concentration approximately $2.0 \mathrm{~mol} \mathrm{dm}^{-3}$;
(h) $2 \mathrm{~cm}^{3}$ of aqueous silver nitrate; concentration approximately $0.05 \mathrm{~mol} \mathrm{dm}^{-3}$;
(i) access to a bottle of concentrated aqueous ammonia;
(j) $2 \mathrm{~cm}^{3}$ of aqueous sodium chlorate(I) (approximately $5 \%$ available chlorine) labelled aqueous chlorine;
(k) $2 \mathrm{~cm}^{3}$ of freshly prepared aqueous starch;
(l) phenolphthalein indicator;
(m) a supply of distilled water.

[^0]
## 6243/01B

| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ (a) | Observation <br> Yellow / Orange (1) <br> Inference <br> Sodium $/ \mathrm{Na}^{+}(\mathbf{1 )}$ | Golden | Orange-red <br> Na alone | $\mathbf{2}$ |

$\left.\begin{array}{|l|l|l|l|l|}\hline \begin{array}{l}\text { Question } \\ \text { Number }\end{array} & \text { Correct Answer } & \text { Acceptable Answers } & \text { Reject } & \text { Mark } \\ \hline \mathbf{1 ( b ) ( i )} & \begin{array}{l}\text { Observations } \\ \text { Yellow precipitate (1) } \\ \text { Insoluble (in } \mathrm{NH}_{3} \text { (1) }\end{array} & & & \mathbf{3} \\ \text { Inference } \quad \text { Iodide / I (1) }\end{array} \quad \begin{array}{l}\text { Iodine / I } \\ \text { /iodine ion alone }\end{array}\right]$

| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 ( b ) ( i i )}$ | Observations <br> Brown (solution)(1) <br> Blue / Black / Blue-Black (1) <br> Inference $\quad$ lodine / $\mathrm{I}_{2}(1)$ | Orange / yellow |  | $\mathbf{3}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 ~ ( b ) ( i i i ) ~}$ | $\mathrm{Cl}_{2}+2 \mathrm{I}^{-} \rightarrow 2 \mathrm{Cl}^{-}+\mathrm{I}_{2}$ <br> $[$ Ignore state symbols] |  |  | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ (c) | Black solid /purple vapour / <br> yellow solid / steamy fumes/ <br> misty / cloudy fumes | Fizzing / <br> effervesence | Identity of products <br> eg iodine <br> Bad egg smell <br> White smoke | $\mathbf{1}$ |


|  | Correct Answer |  |  |  |  |  |  | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 2 (b)(i) | $\frac{3.90}{40.0}$ <br> $=0.0975\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ <br> If units given must be mol <br> $\mathrm{dm}^{-3}$ <br> Penalise once only |  |  | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 2 (b)(ii) | $\frac{\text { Mean titre }}{1000}$ <br> $=$ answer (mol) 0.0975 <br> If units given must be mol | Cq on (i) |  | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2 ~ ( b ) ( i i i ) ~}$ | Answer to (ii) <br> 2 <br> If units given must be mol | Cq on (ii) |  | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2 ~ ( b ) ( i v ) ~}$ | Answer to (iii) $\times \frac{1000}{25.0}$ <br> $=$ concentration $\left(\mathrm{mol} \mathrm{dm}^{-3}\right)$ <br> Answer to 3sf. If units given <br> must be mol dm | Cq on (iii) |  |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2 ~ ( c ) ( i ) ~}$ | It will halve it <br> OR candidates mean titre <br> divided by 2 |  |  | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 2 (c)(ii) | Less accurate because <br> greater percentage/relative <br> error |  |  | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3 ~ ( a ) ~}$ | Table 2 <br> Full set of temperature <br> readings (1) <br> Readings to whole degree (1) <br> (Penalise once only) <br> $[\checkmark \checkmark$ Bottom RHS of Table 2] |  |  | $\mathbf{2}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3 ~ ( b ) ~}$ | Graph <br> Temperature(y) scale - 2 cm <br> at least 10º and allows for <br> extrapolation if necessary (1) <br> All points correctly plotted (1) |  |  | $\mathbf{2}$ |


| Question Number | Correct Answer |  |  |  | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 (c)(i) | Correct extrapolation to 3 minutes (1) <br> $\Delta T$ correctly follows from working (1) <br> Accuracy <br> Compare candidate's $\Delta T$ (corrected if necessary) with examiner's $\Delta T$. <br> Examiner's $\Delta \mathrm{T}=25^{\circ} \mathrm{C}$ <br> Show difference on script as $d=$ <br> Award accuracy marks as follows |  |  |  | If no graph, $\Delta T=T_{\text {MAX }}-T_{\text {MIN }}$ for accuracy |  | 5 |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :---: | :--- | :--- |
| $\mathbf{3}$ (c)(ii) | $\frac{50 \times 0.50}{1000}=0.025$ | Answer only |  | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :---: | :--- | :--- |
| $\mathbf{3 ~ ( c ) ( i i i ) ~}$ | $50 \times 4.18 \times \Delta \mathrm{T} \mathrm{J}$ <br> OR <br> $\frac{50 \times 4.18 \times \Delta \mathrm{T}}{} \mathrm{kJ}$ <br> $[\mathrm{Cq}$ on $\Delta \mathrm{T}$. Ignore sign] | Answer only with <br> units |  | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 3 (c)(iv) | Answer to (c)(iii) <br> Answer to (c)(ii) <br> Answer to 2 SF only and kJ <br> mol (1) <br> Negative sign ONLY-award $_{\text {independently.(1) }}$ | Answer cq on (c)(ii) <br> and (iii) | Answers that do not <br> follow heat method. <br> moles | 3 |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3}$ (d) | No change since more heat <br> but also more volume <br> of solution |  |  | $\mathbf{1}$ |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 4 | Add Fe to $\mathrm{CuSO}_{4}$ (and stir) until blue colour disappears / reaction ends <br> $2 \checkmark$ Add HCl to mixture <br> $3 \checkmark$ Until no more bubbles / reaction ends <br> 4 <br> Filter off Cu . Wash Cu and dry (until constant mass) <br> ${ }^{5} \checkmark$ Weigh Cu <br> $6 \checkmark$ Moles $\mathrm{Cu}=\frac{\text { mass } \mathrm{Cu}}{63.5}$ <br> 7 ${ }^{7}$ Conc $^{n} \mathrm{CuSO}_{4}=$ moles $\mathrm{CuSO}_{4} \times \frac{1000}{50}$ <br> ${ }^{6} \checkmark^{7} \checkmark$ Stand alone <br> OR <br> 1 <br> Weigh Fe <br> ${ }^{2}$ <br> Add Fe to $\mathrm{CuSO}_{4}$ and stir until blue colour disappears <br> $3 \checkmark$ Add HCl to mixture. <br> 4 <br> When no more bubbles / reaction ends measure volume $\mathrm{H}_{2}$. <br> ${ }^{5}$ Volume $\mathrm{H}_{2}=$ moles $\mathrm{H}_{2}$ 24, 000 <br> ${ }^{6}$ Moles $\mathrm{H}_{2}=$ moles Fe in excess and mass Fe at start $\frac{56.0}{5}$ $=$ moles Fe at start moles Fe that displace $\mathrm{Cu}=$ moles Fe at start - moles Fe in excess <br> ${ }^{7}$, Moles Fe that displace Cu $=$ moles $\mathrm{CuSO}_{4}$ <br> $\mathrm{Conc}^{n} \mathrm{CuSO}_{4}=$ moles $\mathrm{CuSO}_{4} \times \frac{1000}{50}$ <br> ${ }^{5} \checkmark^{6} \checkmark^{7} \checkmark$ Stand alone |  |  | 7 |

Group 2 (6243/01B): This practical test must be taken on the day specified on the official timetable, and is available to Home Centres, International Teaching Institutions and International Centres.

## Apparatus and Materials

## Apparatus

Each candidate will require:

1. two test tubes and one boiling tube in a test tube rack;
2. apparatus and materials for carrying out a flame test;
3. one $10 \mathrm{~cm}^{3}$ measuring cylinder;
4. a supply of dropping pipettes;
5. spatula;
6. $\quad 50.0 \mathrm{~cm}^{3}$ burette, in stand and clamp, with small funnel for filling;
7. small beaker for draining burette;
8. $\quad 25.0 \mathrm{~cm}^{3}$ pipette and safety filler;
9. white tile;
10. two $250 \mathrm{~cm}^{3}$ conical flasks;
11. expanded polystyrene cup held securely in a $250 \mathrm{~cm}^{3}$ beaker;
12. one $50 \mathrm{~cm}^{3}$ or $100 \mathrm{~cm}^{3}$ measuring cylinder;
13. timer;
14. a thermometer, range $0-100^{\circ} \mathrm{C}$ (or similar), graduated in $1.0^{\circ} \mathrm{C}$ intervals or a thermometer that can be read to an accuracy of at least $1.0^{\circ} \mathrm{C}$.

## Materials

Each candidate will require:
(a) ${ }^{*} \quad 1.0 \mathrm{~g}$ of sodium iodide in a stoppered tube labelled $\mathbf{E}$. The identity of this compound is not to be disclosed to candidates;
(b) * $200 \mathrm{~cm}^{3}$ of aqueous sodium hydroxide of concentration $0.0975 \mathrm{~mol} \mathrm{dm}^{-3}$ labelled Solution $\mathbf{F}$;
(c) * $200 \mathrm{~cm}^{3}$ of aqueous ethanedioic acid of concentration $0.0500 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ labelled Solution $\mathbf{G}$ [this may be prepared by dissolving 6.30 g of solid ethanedioic acid dihydrate, $(\mathrm{COOH})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ per dm${ }^{3}$ of solution.]. The concentration of this solution is not to be disclosed to candidates.
(d) ${ }^{*} 70 \mathrm{~cm}^{3}$ of aqueous copper(II) sulphate of concentration $0.50 \mathrm{~mol} \mathrm{dm}^{-3}$ labelled $\mathbf{H}$;
(e) ${ }^{*}$ between 2.4 g and 2.5 g of powdered zinc in a stoppered container labelled zinc;
(f) $2 \mathrm{~cm}^{3}$ of dilute nitric acid; concentration approximately $2.0 \mathrm{~mol} \mathrm{dm}^{-3}$;
(g) $2 \mathrm{~cm}^{3}$ of dilute hydrochloric acid; concentration approximately $2.0 \mathrm{~mol} \mathrm{dm}^{-3}$;
(h) $2 \mathrm{~cm}^{3}$ of aqueous silver nitrate; concentration approximately $0.05 \mathrm{~mol} \mathrm{dm}{ }^{-3}$;
(i) access to a bottle of concentrated aqueous ammonia;
(j) $2 \mathrm{~cm}^{3}$ of aqueous sodium chlorate(I) (approximately $5 \%$ available chlorine) labelled aqueous chlorine;
(k) $2 \mathrm{~cm}^{3}$ of freshly prepared aqueous starch;
(l) phenolphthalein indicator;
(m) a supply of distilled water.

For home centres (ONLY), the materials identified with an asterisk $(*)$ will be sent by a firm of manufacturing chemists:

## 6243/01C

| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ (a) | Observation <br> Red / pink (1) <br> Inference <br> $\mathrm{H}^{+} / \mathrm{H}_{3} \mathrm{O}^{+}(1)$ |  |  | $\mathbf{2}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 ( b )}$ | Observation <br> White ppte (1) <br> Inference <br> $\mathrm{SO}_{4}{ }^{2-} /$ sulphate (1) |  | Suspension | $\mathbf{2}$ |


| Question Number | Correct Answer |  | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 (c) | Observation Inference $\mathrm{K}^{+}(1)$ | Lilac (1) Potassium / | Mauve/purple | K | 2 |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 ( d )}$ | Observation <br> Limewater cloudy / milky / <br> White ppte (1) <br> Inferences <br> Carbon dioxide $/ \mathrm{CO}_{2}(1)$ <br> Carbonate $/ \mathrm{CO}_{3}{ }^{2-(1)}$ | Hydrogen carbonate <br> $/ \mathrm{HCO}_{3}{ }^{-}$ |  | $\mathbf{3}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 ( e )}$ | $\mathrm{K}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4}$ <br> $\square \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} /$ <br> $\mathrm{CO}_{3}{ }^{-2}+2 \mathrm{H}^{+}$ <br> $\square \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ <br> $[$ IGNORE state symbols $]$ | Equivalent $\mathrm{HCO}_{3}{ }^{-}$ <br> equations. |  | $\mathbf{1}$ |


|  | Correct Answer |  |  |  |  |  |  | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 2 (b)(i) | $\frac{\text { Mean titre }}{}$1000 <br> $=$ answer (mol) <br> Answer to at least 3 SF. If <br> units given must be mol <br> Penalise once only |  | $\mathbf{1}$ |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2 ~ ( b ) ( i i ) ~}$ | $\frac{\text { Answer to (i) }=\text { answer (mol) }}{2}$ <br> Answer to at least 3 SF. If <br> units given must be mol | Cq on (i) |  | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 2 (b)(iii) | Answer to (ii) $\times \frac{1000}{25.0}$ | Cq on (ii) |  | $\mathbf{1}$ |
|  | Answer to at least 3 SF. If <br> units given must be mol dm |  |  |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2 ~ ( b ) ( i v ) ~}$ | 4.29 $=$ molar mass <br> Answer to (iii) <br> Units: g or mol $^{-1}$ <br> Answer to at least 2SF | Cq on (iii) |  | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 2 (c)(i) | It will halve it <br> OR candidates mean titre <br> divided by 2 |  |  | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2}$ (c)(ii) | Less accurate because <br> greater percentage/relative <br> error |  |  | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3 ~ ( a )}$ | Table 2 <br> Full set of temperature <br> readings (1) <br> Readings to whole degree <br> $(\mathbf{1 )}$ <br> $[\checkmark \checkmark$ Bottom RHS of Table 2] | Temps to 1 dp |  | $\mathbf{2}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3}$ (b) | Graph <br> Temperature(y) scale -2 cm <br> at least $10^{\circ}$ and allows for <br> extrapolation if necessary (1) <br> [と Bottom LHS of grid] |  |  | $\mathbf{2}$ |
|  | All points correctly plotted <br> $\mathbf{( 1 )}$ <br> $[\checkmark$ on bottom LHS of grid] |  |  |  |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 3 (c)(i) | $\Delta \mathrm{T}$ working on graph correct <br> (1) <br> $\Delta T$ correctly follows from working (1) <br> Accuracy <br> Compare candidate's $\Delta T$ (corrected if necessary) with supervisor's $\Delta T$. <br> [default $\Delta \mathrm{T}=25^{\circ} \mathrm{C}$ ] <br> Show difference on script as $d=$ <br> Award accuracy marks as follows <br> $\left[^{2} \checkmark\right.$ on graph $+{ }^{3} \checkmark$ in space below $\Delta \mathrm{T}$ ] | If no graph then $\Delta T=$ $\mathrm{T}_{\text {max }}-\mathrm{T}_{\text {min }}$ for accuracy |  | 5 |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :---: | :--- | :--- |
| $\mathbf{3}$ (c)(ii) | $\frac{50 \times 0.50}{1000}=0.025$ | Answer only |  | 1 |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 3 (c)(iii) | $50 \times 4.18 \times \Delta \mathrm{T}$ J <br> OR <br> $\frac{50 \times 4.18 \times \Delta \mathrm{T}}{} \mathrm{kJ}$ <br> [Cq on $\Delta \mathrm{T}$. To at least two <br> SF: ignore sign] | Answer only with <br> units |  | $\mathbf{1}$ |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 3 (c)(iv) | Answer to (c)(iii) (1) <br> Answer to (c)(ii) <br> Answer to 2 SF only and $\mathrm{kJ} \mathrm{mol}^{-1}$ (1) <br> Negative sign ONLY-award <br> independently.(1) | Answer cq on (c)(ii) and (iii) | Answers that do not follow heat method. moles | 3 |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 3 (d) | Use pipette / burette instead of measuring cylinder to measure $\mathrm{CuSO}_{4}$ OR <br> Lid on polystyrene cup/ more lagging | More accurate thermometer. OR Mechanical stirring |  | 1 |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 4 | ${ }^{1} \checkmark$ Weigh $M(1)$ <br> $2 \checkmark \quad$ Add $M$ to $\mathrm{CuSO}_{4}$ [and stir] (1) <br> ${ }^{3} \checkmark \quad$ Filter off $\mathrm{Cu}(1)$ <br> ${ }^{4} \checkmark$ Wash Cu and dry (to constant <br> mass) <br> (1) <br> ${ }^{5} \checkmark$ Weigh Cu (1) <br> $6 \checkmark$ Moles $\mathrm{Cu}=\frac{\text { mass } \mathrm{Cu}}{63.5}$ <br> $7 \checkmark \quad M_{r}(M)=\frac{\operatorname{mass} M}{\operatorname{moles} M(C u)}$ <br> ${ }^{6}{ }^{7} \checkmark$ stand alone |  | .....until blue colour disappears | 7 |

Group 3 (6243/01C): This practical test is only available to International Teaching Institutions and International Centres. The date of this practical test MUST be agreed in advance through submission of Form ES-F8-MJ2009 found in the International Information Manual.

## Apparatus and Materials

## Apparatus

Each candidate will require:

1. three test tubes in a test tube rack;
2. apparatus and materials for carrying out a flame test;
3. apparatus for carrying out a limewater test in 1(d) using the technique with which candidates are most familiar;
4. $\quad 10 \mathrm{~cm}^{3}$ measuring cylinder;
5. a supply of dropping pipettes;
6. spatula;
7. $\quad 50.0 \mathrm{~cm}^{3}$ burette, in stand and clamp, with small funnel for filling;
8. small beaker for draining burette;
9. $\quad 25.0 \mathrm{~cm}^{3}$ pipette and safety filler;
10. white tile;
11. two $250 \mathrm{~cm}^{3}$ conical flasks;
12. expanded polystyrene cup held securely in a $250 \mathrm{~cm}^{3}$ beaker;
13. one $50 \mathrm{~cm}^{3}$ or $100 \mathrm{~cm}^{3}$ measuring cylinder;
14. timer;
15. a thermometer, range $0-100^{\circ} \mathrm{C}$ (or similar), graduated in $1.0^{\circ} \mathrm{C}$ intervals or a thermometer that can be read to an accuracy of at least $1.0^{\circ} \mathrm{C}$.

## Materials

Each candidate will require:
(a) $10 \mathrm{~cm}^{3}$ of approximately $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ dilute sulphuric acid labelled $\mathbf{P}$. The identity of this solution is not to be disclosed to candidates;
(b) $\quad 1.0 \mathrm{~g}$ of anhydrous potassium carbonate in a stoppered tube labelled $\mathbf{Q}$. The identity of this compound is not to be disclosed to candidates;
(c) $200 \mathrm{~cm}^{3}$ of aqueous sodium hydroxide of concentration $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ labelled Solution $\mathbf{R}$;
(d) $200 \mathrm{~cm}^{3}$ of aqueous ethanedioic acid of concentration $6.00 \mathrm{~g} \mathrm{dm}^{-3}$ labelled Solution S. [This is prepared by dissolving 6.00 g of solid ethanedioic acid dihydrate, $(\mathrm{COOH})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ per dm 3 of solution.] Candidates will be given the mass of the anhydrous acid per $\mathrm{dm}^{3}$ of solution;
(e) $70 \mathrm{~cm}^{3}$ of aqueous copper(II) sulphate of concentration $0.50 \mathrm{~mol} \mathrm{dm}^{-3}$ labelled T ;
(f) between 2.4 g and 2.5 g of powdered zinc in a stoppered container labelled zinc;
(g) access to a bottle of Universal Indicator solution;
(h) $2 \mathrm{~cm}^{3}$ of aqueous barium chloride; concentration approximately $0.2 \mathrm{~mol} \mathrm{dm}^{-3}$;
(i) access to a bottle of freshly prepared limewater;
(j) phenolphthalein indicator;
(k) a supply of distilled water.

| Question <br> Number | Correct Answer | Acceptable <br> Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 ( a )}$ | $\mathrm{Na}^{+} \mathbf{( 1 )}$ | sodium | $\mathrm{Na} / \mathrm{NA}^{+}$ | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Acceptable <br> Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ (b) | (Gas evolved): ammonia/ $\mathrm{NH}_{3}$ <br> (1) <br> (Anion in B): nitrate/ $\mathrm{NO}_{3}{ }^{-}$ <br> / nitrate(V) (1) <br> Allow nitrite / $\mathrm{NO}_{2}{ }^{-} /$nitrate(III) |  | $\mathrm{NH}_{4}{ }^{+}$Ammonium <br> $\mathrm{NO}_{3} / \mathrm{NO}_{2}$ | $\mathbf{2}$ |


| Question <br> Number | Correct Answer | Acceptable <br> Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}(\mathbf{c )}$ | Sulphate/ $\mathrm{SO}_{4}{ }^{2-} /$ sulphate(VI) <br> Sulfate/ sulfate (VI) | $\mathrm{SO}_{4}$ | $\mathbf{1}$ |  |


| Question <br> Number | Correct Answer | Acceptable <br> Answers | Reject |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ (d) | Test: <br> (dilute) nitric acid/ $\mathrm{HNO}_{3}$ (1) <br> (aqueous) silver nitrate <br> (solution)/ $\mathrm{AgNO}_{3}$ (1) <br> accept Test reagents added in <br> either order <br> Mark test reagents separately If <br> reagents react with each other <br> this is + and scores 0. E.g Silver <br> nitrate plus sodium hydroxide <br> scores zero <br> If wrong reagent does not <br> interfere score 1 mark <br> Ignore ammonia and <br> concentrated <br> (Formula of yellow <br> precipitate): Agl (1) <br> (Anion in D): iodide / I (1) |  | $\mathbf{4}$ |


| Question <br> Number | Correct Answer | Acceptable <br> Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ (e) | (Gas evolved): carbon <br> dioxide/ $\mathrm{CO}_{2}$ (1) |  |  | $\mathbf{3}$ |
|  | (Anion in E): carbonate $/ \mathrm{CO}_{3}{ }^{2-}$ <br> (1) <br> or hydrogencarbonate $/ \mathrm{HCO}_{3}{ }^{-} /$ <br> bicarbonate (1) <br> anions in either order |  | $\mathrm{CO}_{3}$ |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2 ~ ( a ) ~}$ | Note <br> The first two marks are for <br> how reflux works <br> The third mark is for either <br> why heat is needed or why <br> heat under reflux is needed <br> (Liquid boils and) <br> gas/ vapour/ fumes is <br> condensed/ turns back to <br> liquid (1) | If answer implies a <br> closed system score MAX <br> 2 | $\mathbf{3}$ |  |
|  | Runs back/ falls back/ <br> returns to flask (1) <br> Third mark <br> heating needed because) <br> reaction is slow / reaction <br> has a high activation energy <br> / speed up the reaction <br> OR <br> prevent products boiling off/ <br> to prevent loss of (volatile) <br> substances (1) | Loss of reactants/ <br> products | To allow reaction to go <br> to completion <br> References to bond <br> energy |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 2 (b) | Any two impurities from: <br> Propan-2-ol <br> Bromine <br> Hydrogen bromide / <br> hydrobromic acid <br> Sulphur dioxide / sulphurous <br> acid <br> Sulphuric acid <br> Note (2) <br> 2- bromopropane is not an <br> impurity | Propene <br> 1.2 Dibromopropane <br> each case | Conc sulphuric acid | $\mathbf{2}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2}$ (c)(i) | Remove acid / neutralise <br> (Allow correct named acid) |  | Remove impurities | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2 ~ ( c ) ( i i ) ~}$ | Lowest layer is the 2- <br> bromopropane |  |  | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2}$ (c)(iii) | Drying agent/ remove water <br> (1) |  | dehydrate | $\mathbf{1}$ |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 2 (d) | Moles of propan-2-ol $\frac{7.8}{60}=0.13(\mathrm{~mol})$ <br> theoretical yield $=0.13 \times 123$ $=16.0(\mathrm{~g})(1)$ <br> percentage yield $=$ $\frac{10.0}{16.0} \times 100 \%=62.5(4) \%(1)$ <br> correct answer with some working scores (3) correct answer alone scores (2) <br> Wrong unit -1 <br> Calculations in moles not grams: $0.0813 / 0.13 \times 100=$ 62.5 <br> If moles switched allow 1 mark for $128 \%$ <br> Ignore significant figures unless reduce to 1 sig. fig. | $15.99 \mathrm{~g} / 16 \mathrm{~g}$ <br> 63\% <br> 62.3\% <br> $80 \%$ and $61.5 \%$ (are working to 1 sig fig in calculation) Scores 2 marks | $\begin{aligned} & 15.9 \mathrm{~g} \\ & 60 \% \end{aligned}$ | 3 |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3 ~ ( a ) ( i ) ~}$ | $(150 \times 4.18 \times 29.0=) 18200$ <br> $\mathrm{~J} / 18.2 \mathrm{~kJ}$ (1) | $18183 \mathrm{~J} / 18.183 \mathrm{~kJ}$ | 18000 <br> Wrong units | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3}$ (a)(ii) | Mass of ethanol burned $=$ <br> $0.92(\mathrm{~g})(\mathbf{1})$ <br> $\frac{0.92}{46}=0.02(\mathrm{~mol})$ (1) | $0.020 / 0.0200$ |  | $\mathbf{2}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3}$ (a)(iii) | $-\frac{\text { answer to (i) in kJ }}{\text { answer to (ii) }}$i.e. <br> $-\frac{18.2}{0.02}=-909 /-910\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ <br> value (1) <br> answer with negative sign <br> (and correct units) (1) <br> (standalone)$-909\left(\mathrm{~kJ} \mathrm{~mol}{ }^{-1}\right)$ |  |  |  |

\(\left.$$
\begin{array}{|l|l|l|l|l|}\hline \begin{array}{l}\text { Question } \\
\text { Number }\end{array} & \text { Correct Answer } & \text { Acceptable Answers } & \text { Reject } & \text { Mark } \\
\hline \mathbf{3} \text { (a)(iv) } & \begin{array}{l}\text { These are stand alone marks } \\
\text { (Identity of black solid): } \\
\text { carbon/ C (1) } \\
\text { (Effect): (Value is) } \\
\text { lower/ smaller/less } \\
\text { exothermic/ less negative/ } \\
\text { decrease (1) } \\
\text { (Reason): (as) incomplete } \\
\text { combustion /less CO2 } \\
\text { formed/ fewer C=O bonds } \\
\text { formed (1) }\end{array}
$$ \& \begin{array}{l}Allow reference to <br>
not enough oxygen <br>
Incomplete <br>

oxidation\end{array} \& Incomplete reaction\end{array}\right]\)| coke/ charcoal |
| :--- |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3 ( a ) ( v )}$ | $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{I})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})$ <br> $+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ <br> Correctly balanced equation <br> $\mathbf{( 1 )}$ <br> State symbols (1) <br> The state symbol mark can <br> also be awarded for an <br> equation that has the correct <br> species but is wrongly <br> balanced. |  | multiples <br> $\mathrm{H}_{2} \mathrm{O}(\mathbf{g})$ |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3}$ (a)(vi) | Water is produced as a liquid <br> under standard conditions <br> whereas water is produced <br> as a vapour in (a)(iii) <br> (therefore releasing less <br> energy)/ <br> Water is not in its standard <br> state (not liquid) | Note This is the only <br> answer. 'Not standard <br> conditions' will not do. <br> References to heat loss | $\mathbf{1}$ |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3 ~ ( b ) ( i ) ~}$ | Either <br> ethanal/ volatile <br> component/ product can <br> escape <br> Or <br> product can be distilled/ <br> Distillation occurs | Incomplete oxidation <br> Partial oxidation <br> (occurs) | $\mathbf{1}$ |  |
| Or <br> ethanal/ volatile <br> component/ product has a <br> boiling point less than $60^{\circ} \mathrm{C}$ |  |  |  |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3}$ (b)(ii) | Ethanal does not escape/ is <br> not distilled of/ is refluxed/ <br> falls back into flask (1) |  | Full oxidation (occurs) | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3 ~ ( b ) ( i i i ) ~}$ | Orange to green / blue / <br> brown (1) <br> Both colours required | Orange to any <br> combination of the <br> colours given |  | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{4}$ (a)(i) | (Moles C) $\frac{2.18}{12}$ and | Any other correct <br> method |  | 2 |
|  | (Moles H) $\frac{0.36}{1}$ and |  |  |  |
|  | (Moles 0) $\frac{1.46}{16}$ |  |  |  |
|  | $=0.18: 0.36: 0.09$ | (1) |  |  |
|  | $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ | (1) |  |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{4 ~ ( a ) ( i i ) ~}$ | $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}=44.0$    <br> $\frac{88.0}{44.0}=2(.00)$ (1)   |  |  |  |


| Question <br> Number | Correct Answer | Acceptable <br> Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{4 ~ ( b ) ~}$ | (First inference): (carbon)-carbon <br> double bond/ C=C/ alkene <br> (1) <br> (Second inference): | Double <br> bond/ unsaturated <br> -OH/ alcohol / hydroxyl / hydroxy <br> (group) (1) | Carboxylic acid <br> $\mathrm{OH}^{-} /$hydroxide <br> Hydroxyl followed by <br> $\mathrm{OH}^{-}(\mathbf{0 )}$ | $\mathbf{2}$ |


| Question Number | Correct Answer $\quad$ Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 4 (c) | Any valid pair of cis and trans isomers of $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$ that contain at least one alcohol functional group. (2) <br> Possible examples <br> and <br> and <br> There is one mark for each isomer in the pair <br> There must be two isomers drawn <br> If the two isomers drawn are both compounds of $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$ that show cis-trans isomerism but are not a cis-trans pair score 1 mark | If they draw isomers of a compound that is not $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$ (0) | 2 |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 5 | $\checkmark 1$ Weigh crucible empty <br> $\checkmark 2$ Weigh crucible plus magnesium OR weigh magnesium separately <br> $\checkmark 3$ Add excess (dilute) nitric acid / add nitric acid till all dissolved / reacted <br> $\checkmark 4$ Heat (to decompose magnesium nitrate) in a fume cupboard <br> (This mark may be spread across different parts of the question) <br> $\checkmark 5$ Weigh crucible plus residue/ weigh crucible + MgO <br> $\checkmark 6$ Re-heat to constant mass Note: This is only positive evidence for completion of the reaction. <br> Note; If candidate isolates the magnesium nitrate and transfers it to a new vessel for decomposition score. Reason: results will be inaccurate in terms of whole point of experiment. Max 5 | Allow any sort of container generally used in the lab | If no mention of nitric acid in the answer can score only $1^{\text {st }}$ two marks | 6 |

## 6244/01

| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 ( a ) ( i )}$ | $\mathrm{Na}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Na}^{+}+2 \mathrm{OH}^{-}$ <br> OR <br> $\mathrm{Na}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}$ (1) <br> lgnore state symbols even if <br> wrong. | $\mathrm{O}^{2-}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{OH}^{-}$ | $\mathbf{1}$ |  |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 1 (a)(ii) | $\mathrm{P}_{4} \mathrm{O}_{10}(\mathrm{~s})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow$ $4 \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})$ <br> (1) for equation, (1) for states consequential on correct formulae. <br> Accept for (1) $\mathrm{P}_{2} \mathrm{O}_{5}(\mathrm{~s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow$ $2 \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})$ <br> if completely correct. | $\mathrm{H}_{3} \mathrm{PO}_{4}$ shown as ions: $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})$ or $2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{HPO}_{4}{ }^{2-}(\mathrm{aq})$ or $3 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{PO}_{4}^{3-}(\mathrm{aq})$ |  | 2 |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 1 (a)(iii) | $\mathrm{Na}_{2} \mathrm{O}$ ionic (1) <br> $\mathrm{P}_{4} \mathrm{O}_{10}$ covalent (1) <br> Third mark: <br> $\mathrm{O}^{2-}$ ions react with water molecules to remove $\mathrm{H}^{+}$ OR <br> $\mathrm{O}^{2-}$ ions polarise water molecules to form $\mathrm{OH}^{-}$ OR $\begin{equation*} \mathrm{O}^{2-}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{OH}^{-} \tag{1} \end{equation*}$ <br> Fourth mark: <br> polar P-O bond attacked by (polar) water molecules <br> OR <br> $\mathrm{P}^{\delta+}$ attacked by (polar) water <br> molecules (1) | Equivalent answers in diagrams. <br> $P$ is less electronegative than O so is attacked... | Dative or giant covalent <br> Hydrolysis alone Metallic oxide basic <br> Non-metallic oxide acidic | 4 |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 1 (b) | Moles $\mathrm{KO}_{2}=\frac{1.2}{71}=0.0169(1)$ <br> Vol $\mathrm{O}_{2}=\frac{24 \times 0.0169}{2}$ $=0.203 \mathrm{dm}^{3}(1)$ <br> consequential on moles of $\mathrm{KO}_{2}$ OR <br> 142 g oxide gives $24 \mathrm{dm}^{3}$ <br> oxygen (1) <br> so volume of oxygen $\begin{aligned} & =(24 \times 1.2) \div 142 \mathrm{dm}^{3} \\ & =0.203 \mathrm{dm}^{3}(1) \end{aligned}$ <br> Ignore sf, but unit needed and it must agree with the value. Correct answer with no working (2) | 0.017, giving 0.204 $\mathrm{dm}^{3}$ <br> Answer as fraction. $203 \mathrm{~cm}^{3}$ <br> Thus 0.2, 0.20, 0.203, 0.204 can all score in $\mathrm{dm}^{3}$ | $\begin{aligned} & 0.02 \\ & 24 \times 1.2 \end{aligned}$ | 2 |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 2(a)(i) | The energy change when 1 mol <br> of ionic <br> solid/lattice/crystal/compound <br> (1) <br> is formed from ions in the <br> gaseous state (infinitely far <br> apart) <br> OR <br> $\mathrm{M}^{+}(\mathrm{g})+\mathrm{X}^{-}(\mathrm{g}) \rightarrow \mathrm{MX}(\mathrm{s})$ <br> $\mathbf{( 1 )}$ | heat or heat energy <br> or enthalpy; <br> energy (etc) evolved | energy (etc) absorbed.... <br> Compound, substance, <br> molecule. <br> formed from 1 mole of <br> ions | 2 |
| If 'lonic' is not stated in the <br> first mark answer, the first <br> mark can score if ions are <br> mentioned in the answer for <br> the second mark. | Ignore any reference to <br> standard states. | Completely correct <br> endothermic definition scores <br> (1) |  |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 2 (a)(ii) | The heat or energy change <br> for the formation of one mol <br> of gaseous atoms (1) <br> from the element in its <br> standard state (1) <br> Second mark conditional on <br> the first. | Element at 298K and <br> 1atm | one mol of element | 2 |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 2 (b)(i) | polarisation of the anion (by <br> the cation) <br> OR <br> polarisation by the cation (of <br> the anion) <br> OR <br> partial covalent bonding (1) <br> lgnore any reference to any <br> values of lattice energies. | covalent character | Answers referring to <br> molecules <br> alone | $\mathbf{1}$ |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 2 (b)(ii) | $\mathrm{MgF}_{2}$ as answer (0) irrespective of what follows. <br> ( $\mathrm{Mgl}_{2}$ because) the larger iodide ion (1) is more polarisable (than fluoride leading to greater covalence) (1) OR <br> ( $\mathrm{Mgl}_{2}$ because) the smaller fluoride ion in $\mathrm{MgF}_{2}$ (1) is less polarisable (than iodide leading to ionic bonding) (1) <br> Answer ' $\mathrm{Mgl}_{2}$ ' alone scores (0) | iodine ion <br> distorts the electron cloud <br> fluorine ion | Answers based on electronegativity iodine, $\mathrm{I}_{2}$ anion, $\mathrm{I}_{2}$ polarisation of cation by anion <br> fluorine, $F_{2}$ anion, $F_{2}$ | 2 |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3 ( a )}$ | A proton donor or hydrogen <br> ion donor or $\mathrm{H}^{+}$donor (1) |  |  | $\mathbf{1}$ |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 3 (b)(i) | $K_{\mathrm{a}}=\frac{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}\right]\left[\mathrm{CH}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right]}$ | $\left[\mathrm{H}^{+}\right]$for $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$ throughout | $\frac{\left(\mathrm{CH}_{3}-\frac{\mathrm{CH}_{2}}{\left(\mathrm{CHOO}_{3}\right)\left(\mathrm{CH}_{3}\right.} \frac{\left.\mathrm{O}^{+}\right)}{\left.\mathrm{CH}_{2} \mathrm{COOH}\right)}\right.}{\text { COM}}$ <br> Any expression with [ $\mathrm{H}_{2} \mathrm{O}$; <br> [ HA ] and $\left[\mathrm{A}^{-}\right.$] | 1 |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3 ~ ( b ) ( i i ) ~}$ | $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\int\left(\mathrm{K}_{\mathrm{a}} \times \mathrm{c}\right)$ <br> $=J\left(1.3 \times 10^{-6}\left(\mathrm{~mol}^{2} \mathrm{dm}^{-6}\right)\right)$ <br> $=1.14 \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ <br> lgnore units. | $1.1 \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ | $1 \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ | $\mathbf{1}$ |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 3 (b)(iii) | $\begin{align*} & {\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right]_{\text {initial }}=} \\ & {\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right]_{\text {equilibrium }}} \tag{1} \end{align*}$ <br> assumption is justified since $K_{\mathrm{a}}$ is small OR $\left[\mathrm{H}^{+}\right\} \ll 0.10 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ (1) Conditional on first mark. | $\begin{gathered} {\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right]_{\text {equilibrium }}} \\ =0.10 \mathrm{~mol} \mathrm{dm}^{-3} \end{gathered}$ <br> A very small fraction/amount of the acid is dissociated (into ions) OWTTE. Conditional on first mark. | Non standard conditions <br> Acid is partially dissociated; acid is very weak | 2 |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 3 (c)(i) | $\begin{aligned} & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \\ & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{OH}^{-} \end{aligned}$ <br> Allow structural or partially structural formulae. <br> Ignore state symbols. | Equilibrium arrow $\begin{aligned} & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-} \mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{O} \\ & \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{OH}^{-}+\mathrm{Na}^{+} \end{aligned}$ | $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COONa}$ on lhs $\mathrm{Na}^{+} \mathrm{OH}^{-}$ | 1 |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 3 (c)(ii) | Either: $\begin{aligned} & 14=8.94+\mathrm{pOH}(1) \\ & \mathrm{pOH}=5.06 \\ & \therefore\left[\mathrm{OH}^{-}\right]=8.7 \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3} \end{aligned}$ <br> (1) unit required <br> Or: $\begin{aligned} & {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\mathrm{lg}^{-1}(-8.94)} \\ & =1.15 \times 10^{-9}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)(1) \\ & \therefore\left[\mathrm{OH}^{-}\right] \\ & =\frac{1.00 \times 10^{-14}\left(\mathrm{~mol}^{2} \mathrm{dm}^{-6}\right)}{1.15 \times 10^{-9}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)} \end{aligned}$ <br> $=8.70 \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3}(1)$ unit required. <br> Accept 2 sf or more. Allow consequentially on rounding errors for $\left[\mathrm{H}^{+}\right\}$, but not otherwise. <br> Correct answer with units but no working (2) | $8.71 \times 10^{-6} \mathrm{~mol} \mathrm{dm}$ - 3 <br> $1.148 \times 10^{-9}(\mathrm{~mol}$ $\mathrm{dm}^{-3}$ ) giving final answer of $8.71 \times 10^{-6} \mathrm{~mol} \mathrm{dm}$ - 3 | $9 \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3}$ <br> $1.15 \times 10^{-9}$ alone with no further answer $9 \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3}$ | 2 |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 3 (d)(i) | First mark: $\begin{aligned} & \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}+\mathrm{OH}^{-} \\ & \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O} \end{aligned}$ <br> OR <br> $\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}+\mathrm{H}^{+}(1)$ <br> Second mark: $\begin{aligned} & \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \\ & \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O}(1) \end{aligned}$ <br> Third mark: <br> large <br> excess/reservoir/reserve/amount of both the acid and its anion or its salt (1) <br> Fourth mark: <br> the amount of $\mathrm{H}^{+}$or $\mathrm{OH}^{-}$added is small(er) (1) <br> If the candidate uses ethanoic acid, or HA/A , in the two equations but all of them are otherwise correct award (1) only. | NaOH for $\mathrm{OH}^{-}$with $\mathrm{Na}^{+}$on rhs $\begin{array}{r} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}+\mathrm{H}^{+} \rightarrow \\ \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH} \end{array}$ <br> Amount small compared with.... |  | 4 |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 3 (d)(ii) | First mark: <br> [sodium propanoate] $\begin{aligned} & =0.015 \div 0.300\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \\ & =0.050\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)(1) \end{aligned}$ <br> Second mark: <br> [propanoic acid] $\begin{aligned} & =0.0200 \div 0.300\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \\ & =0.0667\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)(1) \end{aligned}$ <br> Correct concentrations plus working score (2) <br> Third mark: $\begin{aligned} & {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{1.3 \times 10^{-5} \times 0.0667}{0.050}} \\ & =1.73 \times 10^{-5}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \\ & \mathrm{OR} \\ & \mathrm{pH}=4.89+\lg (0.050 \div 0.0667) \\ & \quad=4.89-0.127(1) \end{aligned}$ <br> Fourth mark: $\therefore \mathrm{pH}=4.76(1)$ <br> Third and fourth marks score consequentially on incorrect concentrations only if these are used in the correct expression. If no notice of volume change on mixing is taken, the answer is $\mathrm{pH}=5.06$ and this could score the last two marks. <br> Two sf or more | $0.15 \div 3$ <br> $0.20 \div 3$ <br> 4.77, 4.8 <br> 5.1 | 5 | 4 |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3}$ (d)(iii) | [acid] $\div$ [salt] does not <br> (significantly) change <br> OR <br> the acid : salt ratio does not <br> (significantly) change (1) | [anion] for [salt]; <br> $[\mathrm{HA}] /\left\{\mathrm{A}^{-}\right]$ | amounts do not change; <br> acid and salt diluted <br> equally on its own; <br> concentrations do not <br> change. | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 4 (a) | $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{MgBr}$ or $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Mg-Br}$ <br> or $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Mg}^{+} \mathrm{Br}^{-}(1)$ | Other halogens; <br> $\mathrm{C}_{2} \mathrm{H}_{5}$ for $\mathrm{CH}_{3} \mathrm{CH}_{2}-;$ <br> $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{MgX}$ | $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Mg}^{-} \mathrm{Br}^{+}$ <br> $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{BrMg}$ | $\mathbf{1}$ |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 4 (b)(i) | The oxidation state for dichromate is not necessary, but if there it must be (VI); the o.s. for manganate(VII) is necessary. <br> potassium dichromate(VI) + sulphuric acid <br> OR $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{SO}_{4} \text { or } \mathrm{H}^{+}$ <br> OR $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{H}_{2} \mathrm{SO}_{4} \text { or } \mathrm{H}^{+}$ <br> OR <br> potassium manganate(VII) + <br> sulphuric acid <br> OR <br> potassium permanganate + <br> sulphuric acid <br> OR $\mathrm{KMnO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4}$ <br> OR $\mathrm{MnO}_{4}^{-}+\mathrm{H}_{2} \mathrm{SO}_{4} \text { or } \mathrm{H}^{+}$ <br> (1) <br> Ignore dilute or conc. | acidified <br> dichromate(VI) <br> OR acidified <br> manganate(VII) <br> OR <br> acidified <br> permanganate. <br> Hydrochloric acid or $\mathrm{HCl}(\mathrm{aq})$ with dichromate only. | Names and formulae which don't agree. $\mathrm{HCl}$ | 1 |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 4 (b)(ii) | Any apparatus that cannot <br> work (except for presence of <br> a stopper) or is <br> inappropriate, or is blocked <br> between condenser and <br> flask, scores zero overall. <br> lgnore any substances/labels. |  | 3 |  |
|  | First mark: <br> condenser and flask (more or <br> less) vertical (1). Allow these <br> to be shown without a joint. <br> Second mark: <br> heating mantle OR Bunsen <br> burner OR sand bath OR oil <br> bath(1) <br> Third mark: <br> reasonable sectional drawing <br> that will work, and is not <br> stoppered (1). Ignore any <br> thermometer in the top of <br> the condenser unless placed <br> there in a bung. | 'heat' with an arrow | an arrow alone; water |  |
| bath |  |  |  |  |$\quad$| ( |
| :--- |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{4 ( c ) ( i )}$ | $\mathrm{KCN}+\mathrm{H}_{2} \mathrm{SO}_{4}$ or $\mathrm{H}^{+}$or named |  |  |  |
| acid; |  |  |  |  |
|  | HCN or hydrogen <br> Cyanide |  | $\mathbf{1}$ |  |
|  | $\mathrm{KCN}+\mathrm{HCN}$ |  |  |  |
| OR |  |  |  |  |
| $\mathrm{HCN}+\mathrm{NaOH}$ or $\mathrm{OH}^{-}$or base |  |  |  |  |
|  | $(1)$ |  |  |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 4 (c)(ii) | $\mathrm{CH}_{3}$ | OH | No need to show all <br> the bonds |  | 1 |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 4 (d)(i) | The mark can be given for a correct structure here if (c)(ii) is wrong, or for correct protonation of the structure given in (c)(ii). <br> Can show a chloride ion as well, or $-\mathrm{CH}_{2} \mathrm{NH}_{3} \mathrm{Cl}$ without the charges. <br> A fully displayed formula must have the + charge on the nitrogen atom. | No need to show all the bonds $\begin{equation*} \mathrm{C}_{2} \mathrm{H}_{5} \text { for } \mathrm{CH}_{3} \mathrm{CH}_{2} \tag{1} \end{equation*}$ <br> Bonds from alkyl groups acceptable as shown. | -HO once only | 1 |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 4 (d)(ii) |  <br> (2) <br> (1) for reaction with OH , <br> (1) for reaction with $\mathrm{NH}_{2}$ <br> Correct structure or one consequential on (c)(ii) scores. | $\begin{aligned} & \mathrm{C}_{2} \mathrm{H}_{5} \text { for } \mathrm{CH}_{3} \mathrm{CH}_{2} \\ & -\mathrm{OCOCH}_{3} \end{aligned}$ <br> No need to show all the bonds | $\begin{aligned} & -\mathrm{CO}_{2} \mathrm{CH}_{3} \\ & -\mathrm{CH}_{2} \mathrm{CONHCH}_{3} \end{aligned}$ | 2 |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 4 (e)(i) | Non-superimposable on its <br> mirror image (1) | four different groups <br> around a given atom <br> OR <br> Asymmetric carbon <br> atom <br> OR <br> (molecule with) no <br> centre or plane of <br> symmetry | Four groups around a <br> carbon molecule | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Acceptable <br> Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 4 (e)(ii) | Rotates the plane of <br> polarisation of (plane <br> polarised monochromatic) <br> light (in opposite directions) <br> (1) | Plane polarised <br> light is rotated... | bends, twists, turns, <br> deflects, refracts; <br> rotating molecules. | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Acceptable <br> Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 4 (e)(iii) | First mark: <br> Ethanal is (a) planar (molecule <br> around the carbonyl group) (1) | This mark must refer to <br> ethanal. <br> linear (next two marks <br> can score); <br> intermediate <br> carbocation or <br> intermediate molecule | 3 |  |
| Second mark: <br> attack from both or either <br> side(s) (1) <br> Third mark: <br> Reaction gives an equimolar, <br> or 50:50, or racemic, mixture <br> (of the two enantiomers of <br> butan-2-ol) (1) |  |  |  |  |


| Question <br> Number | Correct Answer | Acceptable <br> Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{5 ~ ( a ) ( i ) ~}$ | $\mathrm{CO}_{2}$ acidic (1) <br> PbO basic or amphoteric (1) <br> PbO more basic than $\mathrm{CO}_{2}$ <br> OR <br> Basic character increases <br> down the group (1) only. | Correct equations <br> showing these <br> properties. | Answers with incorrect <br> formulae, e.g CO or <br> $\mathrm{PbO}_{2}$ <br> Basic solution; alkali. | $\mathbf{2}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 5 (a)(ii) | $\mathrm{SiCl}_{4}$ covalent liquid (1) <br> $\mathrm{PbCl}_{2}$ ionic solid (1) <br> For (1): <br> Covalent and ionic alone (1) <br> liquid and solid alone (1) |  | Giant covalent | $\mathbf{2}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{5 ~ ( b ) ~}$ | $\mathrm{SiO}_{2}+2 \mathrm{NaOH} \rightarrow$ <br> $\mathrm{Na}_{2} \mathrm{SiO}_{3}+\mathrm{H}_{2} \mathrm{O}$ |  |  | $\mathbf{1}$ |
| $\mathrm{OR}_{\mathrm{SiO}_{2}+2 \mathrm{OH}^{-} \rightarrow}$$\mathrm{SiO}_{3}{ }^{2-}+\mathrm{H}_{2} \mathrm{O}(1)$ <br> Ignore any state symbols <br> even if wrong. |  |  |  |  |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 5 (c)(i) |  <br> The drawing must be a reasonable attempt at 3D and recognisably tetrahedral. If bond angles are shown they must be close to $109^{\circ}$. If $90^{\circ}$ or $120^{\circ}$ this mark is lost even if the drawing is correct. <br> Second mark: 4 bond pairs (of electrons and no lone pairs) (1) Third mark: repel as far apart as possible, or to maximum separation, or to minimum repulsion (1) Stand alone if referring to electron pairs. |  | Any structure with $90^{\circ}$ bond angles. <br> "4 bonds/atoms repel" loses $3^{\text {rd }}$ mark. <br> bond pairs repel equally | 3 |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 5 (c)(ii) | $\mathrm{C}^{4+}$ requires too much energy for its formation to be recovered via any sort of bonding (1) <br> $\mathrm{C}^{4+}$ has high charge and small size <br> OR $\mathrm{C}^{4+}$ has high charge density <br> (1) <br> it would be extremely polarising of $\mathrm{Cl}^{-}$(giving polar covalent bonds) (1) | Recovered via lattice energy | High $E_{\mathrm{a}}$ <br> Any answer based on electronegativity differences. <br> Atoms polarised.. | 3 |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 5 (d)(i) | acid-base (1) | neutralisation | protonation | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 5 (d)(ii) | Disproportionation or the <br> idea of it scores (0) overall. <br> Either: <br> redox (1) <br> because o.s. of lead changes <br> from +4 to +2 and o.s. of <br> chlorine changes from -1 to <br> O.(1) stand alone. | o.s. of lead goes <br> down and o.s. of <br> chlorine goes up <br> OR <br> lead(IV) has gained <br> electrons and <br> chloride has lost <br> electrons | $\mathbf{2}$ |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 5 (d)(iii) | Tin o.s. is more stable as +4 <br> but lead as +2 <br> OR <br> The +2 state becomes more <br> stable than +4 down the <br> group (1) | (1) <br> so lead(IV) oxide is an <br> oxidising agent (1) stand <br> alone | $\mathrm{PbO}_{2}$ is reduced by <br> HCl <br> $\mathrm{Pb} 4+\mathrm{Pb}(\mathrm{IV})$ is <br> oxidising |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{6 ( a ) ( i )}$ | $\frac{\text { amount of substance }}{\text { volume }}$ | Amount of substance <br> in (given) volume | Mass per unit volume <br> OR ppm <br> OR moles per unit <br> volume of solvent | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 6(a)(ii) | $\mathrm{K}_{\mathrm{c}}=\left[\mathrm{CH}_{3} \underline{\mathrm{COOCH}}_{2} \underline{C H}_{3}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]$ |  | round brackets | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{6 ~ ( b ) ( i ) ~}$ | $\frac{2.43}{\mathrm{~V}}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ <br> If units given they must e <br> correct. |  |  | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 6 (b)(ii) | 2.43 (moles) (1) <br> lgnore units. |  |  | $\mathbf{1}$ |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 6 (b)(iii) | First mark: <br> amount of ethanoic acid (at equilibrium) $=5.00-2.43=2.57 \mathrm{~mol}(1)$ <br> Second mark: <br> amount of ethanol (at equilibrium) $=0.57 \mathrm{~mol}(1)$ <br> If $\left[\mathrm{H}_{2} \mathrm{O}\right.$ ] is omitted in (a)(ii) only the $1^{\text {st }}$ and $2^{\text {nd }}$ marks can be awarded . <br> Third mark: $\begin{equation*} K_{\mathrm{c}}=\frac{(2.43 \div \mathrm{V})(2.43 \div \mathrm{V})}{(2.57 \div \mathrm{V})(0.57 \div \mathrm{V})} \tag{1} \end{equation*}$ <br> V must be used to obtain the $3^{\text {rd }}$ mark, either here or by giving the concentrations separately <br> OR <br> candidate states Vs cancel. <br> Fourth mark: <br> $=4(.03)(1)$ ignore sf. <br> $3^{\text {rd }}$ and $4^{\text {th }}$ marks can be awarded consequentially on a reciprocal K in(a)(ii). <br> Correct answer with no working (1) only. | Values only without working score. <br> Third and fourth marks consequential on their values above. | Calculations based on the idea of mole fractions cannot score the $3^{\text {rd }}$ and $4^{\text {th }}$ marks. | 4 |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{6 ~ ( b ) ( i v ) ~}$ | Volumes or mol dm $^{-3}$ cancel <br> so no units <br> Consequential on expression <br> for K $\mathrm{K}_{\mathrm{c}}$ in (a)(ii) | Units cancel; <br> Equal number of <br> moles on each side |  | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{6}$ (c)(i) | None/no effect/nil <br> effect/zero effect/no change <br> (1) |  |  | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| 6 (c)(ii) | None/no effect/nil |  |  | $\mathbf{1}$ |  |  |  |
| Summer 2009 Chemistry |  |  |  |  |  |  |  |


|  | effect/zero effect/no change <br> $(1)$ |  |  |  |
| :--- | :--- | :--- | :--- | :--- |

## 6245/01

| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 ( a ) ( i )}$ | $3 d^{6}$ <br> $3 d^{5}(1)$ - both needed for <br> mark | Full electronic <br> configuration from <br> $1 s^{2}$ OR separate 3d <br> orbitals 4s ${ }^{0}$ before <br> or after 3d |  | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}(\mathbf{a})(\mathbf{i i )}$ <br> QWC | $\mathrm{Fe}^{3+}$ <br> because it has a half-filled $\boldsymbol{d}-$ <br> (sub-)shell (1) | $5 \times 1 / 2$ filled (3)d <br> orbitals <br> Half filled set of 3d <br> orbitals | Half-filled d orbitals | $\mathbf{1}$ |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 1 \text { (a)(iii) } \\ & \text { QWC } \end{aligned}$ | d-orbitals split by ligands (1) do not allow d-orbital singular <br> absorption of light (of certain colour/frequencies)(s) (1) <br> leads to electron transition from lower to higher energy level <br> Must be clear that electron promotion is caused by absorption of light. If not only $1^{\text {st }}$ mark available (1) <br> If sequence is wrong only the $1^{\text {st }}$ mark is available. | d sub shell for d orbitals | Any mention of emitted light results in $1^{\text {st }}$ mark only being possible. <br> Electron promoted causing absorption of light | 3 |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ (a)(iv) | energy separation of the $d$ - <br> orbitals is different | Accept 'different <br> splitting' if $d-$ <br> orbitals split in (iii). | es are promoted to <br> different energy levels. | $\mathbf{1}$ |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 1(b)(i) | Name <br> hexaaquairon(III) OR hexaquairon(III) <br> Shape and charge (1) <br> Some examples of correct answers <br> OR <br>  <br> Allow bond to H of the $\mathrm{H}_{2} \mathrm{O}$ on righthand equatorial ligands and axial ligands only. | Charge shown on the Fe itself. | Reject any other answers. | 2 |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 ( b ) ( i i )}$ | $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+\mathrm{H}_{2} \mathrm{O}-\mathrm{a}$ |  |  |  |
| $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}\right]^{2+}+\mathrm{H}_{3} \mathrm{O}^{+}(1)$ | $" \rightarrow$ " for "口" | $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+} \mathrm{a}$ <br> $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}\right]^{2+}+\mathrm{H}^{+}$ <br> "aq" instead of " $\mathrm{H}_{2} \mathrm{O} "$ |  |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ (b)(iii) | Add (excess) acid $/ \mathrm{H}_{3} \mathrm{O}^{+} / \mathrm{H}^{+}$ <br> Ignore any reference to <br> concentration | Formula or named <br> strong acid |  | $\mathbf{1}$ |

$\left.\begin{array}{|l|l|l|l|l|}\hline \begin{array}{l}\text { Question } \\ \text { Number }\end{array} & \text { Correct Answer } & \text { Acceptable Answers } & \text { Reject } & \text { Mark } \\ \hline \mathbf{1 ( c ) ( i )} & \begin{array}{l}\text { (dirty/grey/dark) green } \\ \text { precipitate (1) }\end{array} & \begin{array}{l}\text { Green ppt going } \\ \text { brown }\end{array} & \text { Pale/light green } & \text { 2 } \\ {\left[\begin{array}{ll}{\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{OH}^{-} \rightarrow} \\ \mathrm{Fe}(\mathrm{OH})_{2}+6 \mathrm{H}_{2} \mathrm{O}(1) \\ \text { Square brackets not essential }\end{array}\right.} & \begin{array}{l}\mathrm{Fe}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}+ \\ 2 \mathrm{H}_{2} \mathrm{O} \text { as product }\end{array} & \mathrm{Fe}^{2+}+2 \mathrm{OH}^{-} \rightarrow \mathrm{Fe}(\mathrm{OH})_{2}\end{array}\right]$

| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 ( c ) ( i i )}$ | It turns foxy-red/brown/red- <br> brown/rusty (1) | Orange | Red/brick red <br> OR mention of soln | $\mathbf{2}$ |
| oxidation by oxygen (1) |  | Oxidation by air <br> OR redox |  |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 ( d ) ( i )}$ | Amount R reduced <br> $=(1.98 \div 198$ mol $)$ <br> $=0.010$ mol (1) <br> Amount Fe ${ }^{2+}$ oxidised <br> $=(4.56 \div 152$ mol $)$ <br> $=0.030$ mol (1) <br> oxidation state of R changes <br> by 3/1 mole of R gains 3 <br> moles of electron (1) <br> Fe(VI)/+6/6+ (1) stand alone |  | Just "ratio 1:3" |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ (d)(ii) | $\mathrm{K}_{2} \mathrm{FeO}_{4}$ |  | $\mathrm{FeK}_{2} \mathrm{O}_{4}$ | $\mathbf{1}$ |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 2 (a) | both arrows initially - allow arrow from $\pi$ bond towards /to bromine but not from sigma bond past bromine (1) <br> Carbocation (1) <br> arrow from bromide ion towards/to positive carbon atom (1) <br> Lone pair on bromide ion is not necessary Arrow can come from negative charge <br> Ignore partial charges on $\mathrm{Br}_{2}$ <br> Ignore product <br> Ignore any groups on $\mathrm{C}=\mathrm{C}$ | If use $\mathrm{HBr} \max 2$ <br> bromonium ion intermediate |  | 3 |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 2 (b)(i) | ```Amount linolenic acid \(=(100\) \(\div 278 \mathrm{~mol}\) ) \(=0.360 \mathrm{~mol}(1)\) amount \(\mathrm{I}_{2}=(274 \div 254 \mathrm{~mol})=\) 1.08 mol (1) Ignore sf for first 2 marks a number of \(\mathrm{C}=\mathrm{C}\) bonds \(=\) ( \(1.08 \div 0.360\) ) \(=3\) (1) \(3^{\text {rd }}\) mark conditional on first 2 marks If 127 is used hence 6 double bonds max (2)``` |  | 1.07 | 3 |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 2 (b)(ii) | $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{COOCH}_{2}$ | No need to show the <br> -COO- structure in <br> full. <br> Allow $-\mathrm{CO}_{2}$ - for <br> -COO | $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{OCO}$ |  |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 2 (b)(iii) |  | KOH Charges not necessary | Covalent bond between O and Na | 2 |


| Question <br> Number | Correct Answer | Acceptable <br> Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3 ( a ) ( i )}$ | $-360\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ | -360 kJ | $-360 \mathrm{~J} \mathrm{~mol}^{-1}$ | $\mathbf{1}$ |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 3 (a)(ii) | Relative energy levels of the three compounds <br> (1) <br> Stabilisation energy/152 marked (1) | Omission of $3 \mathrm{H}_{2}$ $-152$ |  | 2 |


| Question <br> Number | Correct Answer | Acceptable <br> Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 3 (a)(iii) <br> QWC | Benzene has delocalised <br> $\pi$-electrons/ $\pi$-system (1) <br> Cyclohexatriene would have (localised) <br> double/ $\pi$-bonds (1) |  | delocalised $\boldsymbol{\pi}$-bond | 3 |
|  | Either <br> this makes benzene less reactive to <br> electrophiles <br> OR <br> this makes benzene have a higher activation <br> energy with electrophiles | Inverse argument |  |  |


| Question <br> Number | Correct Answer | Acceptable <br> Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 3 (b)(i) |  | (1) <br> $\mathrm{C}_{6} \mathrm{H}_{6}$ for benzene <br> $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$ for <br> nitrobenzene <br> ignore $\mathrm{H}_{2} \mathrm{SO}_{4}$ on <br> both sides |  |  |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 3 (b)(ii) | $2 \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HNO}_{3} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NO}_{2}^{+}+2 \mathrm{HSO}_{4}^{-}$ <br> OR $\begin{equation*} \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HNO}_{3} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{NO}_{2}^{+}+\mathrm{HSO}_{4}^{-} \tag{1} \end{equation*}$ <br> or both of: $\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HNO}_{3} \rightarrow \mathrm{H}_{2} \mathrm{NO}_{3}^{+}+\mathrm{HSO}_{4}^{-}$ <br> then $\mathrm{H}_{2} \mathrm{NO}_{3}{ }^{+} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{NO}_{2}{ }^{+}$ <br> OR $\mathrm{H}_{2} \mathrm{NO}_{3}^{+}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NO}_{2}^{+}+\mathrm{HSO}_{4}^{-}$ <br> $2^{\text {nd }}$ mark <br> Curly arrow from double bond/ circle towards N of $\mathrm{NO}_{2}{ }^{+}$(1) <br> $3^{\text {rd }}$ mark <br> Correct intermediate. (if a broken ring is used for the delocalised electrons it must extend over more than the 3 carbons and must be broken at the substituted C) (1) <br> $4^{\text {th }}$ mark <br> Curly arrow from C-H bond back into ring (1) Allow loss of $\mathrm{H}^{+}$ Ignore arrow from $\mathrm{HSO}_{4}^{-}$ <br> All marks stand alone |  |  | 4 |


| Question <br> Number | Correct Answer | Acceptable <br> Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3 ~ ( b ) ( i i i ) ~}$ | Avoids formation of (1,3-) dinitrobenzene (1) | Avoids further <br> nitration/substitu <br> tion | Avoids further <br> reaction. | $\mathbf{1}$ |
|  | Ignore numbers | m-dinitrobenzene <br> for 1,3- <br> dinitrobenzene |  |  |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 3 (c)(i) | Common reagent and both organic products (1) <br> Both balanced (1) <br> Conditional on $1^{\text {st }}$ mark <br> If $\mathrm{OCOCH}_{3}$ in product only $2^{\text {nd }}$ mark can be scored | Equations for the reaction with sodium/carboxylic acid $/ \mathrm{PCl}_{5}$ <br> $\mathrm{C}_{6} \mathrm{H}_{5}$ for ring <br> $\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3}$ for the ester $-\mathrm{O} \cdot \mathrm{CO} \cdot \mathrm{CH}_{3}$ |  | 2 |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 3 (c)(ii) |  | $\mathrm{C}_{6} \mathrm{H}_{5}$ in first equation <br> Reaction with diazonium ion/nitric acid/halogenoalkan e | Reaction with acid chloride <br> Bromophenols other than the 2,4,6-isomer. | 2 |


| Question <br> Number | Correct Answer | Acceptable <br> Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3 ( d ) ( i )}$ | Tin/Sn <br> OR <br> iron/Fe <br> and concentrated hydrochloric acid/ <br> concentrated $\mathrm{HCl}(1)$ <br> Ignore reference to sodium <br> hydroxide/NaOH/alkali |  |  |  |


| Question <br> Number | Correct Answer | Acceptable <br> Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3}$ (d)(ii) | 2 |  |  |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3}$ (d)(iii) | $<0^{\circ} \mathrm{C}$ too slow (1) |  |  | $\mathbf{2}$ |
|  | $>10^{\circ} \mathrm{C}$ product/nitrous acid decomposes (1) |  |  |  |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 3 (d)(iv) |  <br> Must show + charge and the bonds around N | $\mathrm{C}_{6} \mathrm{H}_{5}$ for ring $\begin{align*} & \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}=\mathrm{N}^{+}  \tag{1}\\ & \left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N} \equiv \mathrm{~N}\right)^{+} \end{align*}$ | Covalent bond between N and Cl | 1 |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3}$ (d)(v) | (Strongly) alkaline <br> OR <br> $\mathrm{pH} \geq 9$ (1) | $\mathrm{NaOH} / \mathrm{OH}^{-} / \mathrm{Na}_{2} \mathrm{CO}_{3}$ | Any reference to heat <br> under reflux | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Acceptable <br> Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3}$ (d)(vi) | OH of the phenol <br> can be in any <br> position. Allow $-\mathrm{O}^{-}$ <br> for -OH | $\mathrm{C}_{6} \mathrm{H}_{5}$ or $\mathrm{C}_{6} \mathrm{H}_{4}$ for rings | $\mathbf{2}$ |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 4 (a) | k/rate constant changes with <br> change in temperature | Just "rate changes with <br> temperature" | $\mathbf{1}$ |  |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 4 (b)(i) | $\mathrm{I}_{2}+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{L^{-}} \rightarrow \mathrm{S}_{4} \mathrm{O}_{6}{ }^{L^{-}}+2 \mathrm{II}^{-}$ <br> (1) <br> If equation is given: $E^{0}=$ is positive/ $(+) 0.45(\mathrm{~V})$ <br> (1) conditional on correct species on correct sides <br> If equation not given: $\mathrm{E}^{0}$ is $(+) 0.45(\mathrm{~V})$ scores $2^{\text {nd }}$ mark. <br> If equation reversed 0 . | - <br> for $\mathrm{I}_{2} / \mathrm{I}^{-}$is more positive than that for $\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-} / \mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ |  | 2 |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 4 (b)(ii) | Stops the reaction |  |  | $\mathbf{1}$ |

\(\left.$$
\begin{array}{|l|l|l|l|l|}\hline \begin{array}{l}\text { Question } \\
\text { Number }\end{array} & \text { Correct Answer } & \text { Acceptable Answers } & \text { Reject } & \text { Mark } \\
\hline \text { 4 (b)(iii) } & \begin{array}{l}\mathrm{CH}_{3} \mathrm{COCH}_{3}+3 \mathrm{I}_{2}+4 \mathrm{OH}^{-} \\
\rightarrow \mathrm{CHI}_{3}+3 \mathrm{I}^{-}+\mathrm{CH}_{3} \mathrm{COO}^{-}+3 \mathrm{H}_{2} \mathrm{O} \\
\text { iodoform formula (1) } \\
\text { remainder (1) }\end{array}
$$ \& \begin{array}{l}\mathrm{NaOH} for \mathrm{OH}^{-} <br>
\mathrm{NaI} for I <br>
\mathrm{CH}_{3} \mathrm{COONa}^{-} <br>

\mathrm{CH}_{3} \mathrm{COO}^{-}\end{array} \& \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\end{array}\right]\)| $\mathbf{2}$ |
| :--- |


| Question Number | Correct Answer |  | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4 (c)(i) | $\begin{array}{ll} \text { points (1) } \\ \text { line (1) } \end{array}$ |  |  |  | 2 |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 4 (c)(ii) | Zero (1) <br> because the reaction rate is <br> constant (1) <br> $2^{\text {nd }}$ mark conditional on $1^{\text {st }}$ |  | Just 'because it is a <br> straight line/constant <br> gradient' | 2 |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 4 (c)(iii) | One $/ 1 / 1^{\text {st }} /$ first (1) |  |  | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 4(c)(iv) | iodine (of order zero so) is <br> not involved in rate- <br> determining step (1) | Partial orders not <br> equal to <br> stoichiometry <br> therefore must take <br> place in more than <br> one step scores (2) <br> Propanone is first order so <br> involved in RDS (or earlier) <br> OR <br> lodine is a reactant/in the <br> formula of the product (1) | 2 |  |
|  | If 1 st or higher order in (ii) <br> Three species affect rate (1) <br> Three body collision unlikely <br> (1) (so there must be at least <br> two steps) |  |  |  |

\(\left.$$
\begin{array}{|l|l|l|l|l|}\hline \begin{array}{l}\text { Question } \\
\text { Number }\end{array} & \text { Correct Answer } & \text { Acceptable Answers } & \text { Reject } & \text { Mark } \\
\hline \text { 4 (d) } & \text { Colorimeter (1) } & \begin{array}{l}\text { Any mention of starch } \\
\text { scores 0. } \\
\text { Either } \\
\text { take readings over a period } \\
\text { of time/specified times } \\
\text { OR } \\
\text { Monitor/take readings during } \\
\text { the reaction } \\
\text { (1) } \\
\text { Conditional on 1 }\end{array}
$$ \& \begin{array}{l}st marated with <br>
known <br>
concentrations of <br>

iodine\end{array} \& Not just "calibrated"\end{array}\right]\)|  |
| :--- |



| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 5 (b) | $\frac{\text { Propanal }}{3 \text { peaks (1) ratio 3:2:1 (1) }}$Propanone <br> 1peak (1) |  |  | $\mathbf{3}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 5 (c) | Both show the same carbonyl <br> absorption/peaks/ <br> around $1700 \mathrm{~cm}^{-1}$ (1) |  | Just "same absorption" | $\mathbf{1}$ |




| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ (b)(i) | moles B = mass B |  |  |  |
| 392 |  |  |  |  |
| Ignore units |  |  |  |  |
| Answer to at least 3 SF | Penalise SF once <br> only in (i) and (ii) and <br> allow loss of trailing <br> zeros if correct <br> arithmetically in (i) <br> and (ii) | $\mathbf{1}$ |  |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ (b)(ii) | Moles B in $25.0 \mathrm{~cm}^{3}$ <br> $=\frac{\text { answer to (b)(i) }}{10}$ <br> Ignore units <br> Answer to at least 3 SF |  |  | $\mathbf{1}$ |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 1 (b)(iii) | Moles $\mathrm{MnO}_{4}{ }^{-}$in mean titre $=\underline{\text { answer to (b)(ii) (1) }}$ 5 <br> $\mathrm{Conc}^{\mathrm{n}} \mathrm{MnO}_{4}^{-}=$ <br> moles $\mathrm{MnO}_{4}{ }^{-}$in mean titre x <br> 1000 <br> mean titre <br> Answer to 3 SF only e.g. <br> 0.0200 (1) <br> Ignore units |  |  | 3 |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ (c) | Either $\mathrm{KMnO}_{4}$ acts as own <br> indicator or $/$ excess <br> unreacted $\mathrm{KMnO}_{4}$ colours <br> solution in flask or description <br> of colour change in flask |  |  | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2 ~ ( a ) ~}$ | Observations <br> Brown precipitate (1) <br> Insoluble in excess (1) <br> Inference <br> $\mathrm{Fe}(\mathrm{OH})_{3} /$ iron(III) hydroxide <br> (1) | Foxy - red |  |  |
| $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}\right]$ |  |  |  |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2 ~ ( b ) ( i ) ~}$ | Observations <br> Brown / Orange / Red <br> (solution) (1) <br> Blue / Black / Blue-black (1) <br> Ignore any ppts <br> Inference <br> lodine $/ \mathrm{I}_{2} / \mathrm{KI}_{3}$ (1) | I | $\mathbf{3}$ |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2 ~ ( b ) ( i i ) ~}$ | $2 \mathrm{Fe}^{3+}+2 \mathrm{I}^{-} \rightarrow 2 \mathrm{Fe}^{2+}+\mathrm{I}_{2}$ <br> $[$ Ignore state symbols] | multiples | $\mathbf{1}$ |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2 ( c )}$ | Observations <br> Blue precipitate (1) <br> Insoluble in excess NaOH (1) <br> Ignore further observations <br> Inference <br> $\mathrm{Co}(\mathrm{OH})_{2} /$ cobalt(II) hydroxide <br> (1) | $\left[\mathrm{Co(H2O)}_{4}(\mathrm{OH})_{2}\right]$ | Any Cu compounds | $\mathbf{3}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2 ( d ) ( i )}$ | Observation <br> Blue (solution) (1) <br> Inference <br> $\left[\mathrm{CoCl}_{4}\right]^{2-}(\mathbf{1 )}$ | $\mathrm{CoCl}_{2}$ <br> Any Cu complex / <br> compound | $\mathbf{2}$ |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2 ~ ( d ) ( i i ) ~}$ | Ligand exchange /substitution <br> (1) |  |  | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2 ( e )}$ | Observation <br> White precipitate (1) <br> Inference <br> $\mathrm{CoSO}_{4}(\mathbf{1 )}$ | Allow CuSO <br> as a cq <br> answer | Any coloured precipitate. | $\mathbf{2}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3 ~ ( a ) ~}$ | Observation <br> (Orange to) green / blue (1) <br> Inferences <br> Oxidation (1) <br> Primary, secondary alcohol, <br> aldehyde; all three for (1) | Dichromate oxidises | Redox /reduction <br> E is a reducing agent <br> $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \rightarrow 2 \mathrm{Cr}^{3+}$ | $\mathbf{3}$ |

$\left.\begin{array}{|l|l|l|l|l|}\hline \begin{array}{l}\text { Question } \\ \text { Number }\end{array} & \text { Correct Answer } & \text { Acceptable Answers } & \text { Reject } & \text { Mark } \\ \hline \mathbf{3 ~ ( b ) ~} & \begin{array}{l}\text { Observations } \\ \text { Blue to red litmus and } \\ \text { (red litmus no change) (1) } \\ \text { White / misty / Steamy fumes } \\ \text { /vapour (1) }\end{array} & & \text { White smoke } \\ \text { Inference } \\ \text { (Primary or secondary) } \\ \text { alcohol / 'not an aldehyde' if } \\ \text { follows 3rd mark in (a) (1) }\end{array} \quad \begin{array}{l}\text { Any answer including } \\ \text { carboxylic acid }\end{array}\right]$

| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3 ~ ( c ) ~}$ | Observation <br> (Pale) yellow precipitate (1) <br> Inferences <br> lodoform / tri-iodomethane / <br> $\mathrm{CHI}_{3}(\mathbf{1})$ <br> $\mathrm{CH}_{3} \mathrm{CHOH} /$ methyl <br> secondary alcohol (or <br> ethanol) (1) |  | Any answer including <br> methyl ketone $/ \mathrm{CH}_{3} \mathrm{CO} /$ <br> ethanal | $\mathbf{3}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3 ( d )}$ | $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$ | Full structural / <br> skeletal formula | $-\mathrm{H}-\mathrm{O}$ bond | $\mathbf{1}$ |

## 3 (c), (d)

If no ppt observed in (c) then may allow $3^{\text {rd }}$ mark in (c) for e.g. 'not methyl secondary alcohol (or ethanol)' then allow propan-1-ol in (d).

| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 4 | Candidate's test on all four compounds <br> $\mathbf{R 1}_{\checkmark} \quad$ Observation and inference from test on all four compounds <br> T2 $\checkmark \quad$ Candidate's second test <br> R2 $\downarrow$ Observation and inference from second test <br> T3 $\quad$ Candidate's third test <br> R3 $\checkmark \quad$ Observation and inference from third test <br> L <br> Remaining compound is cyclohexane <br> Tests and observations / inferences which can be done in any order. Each test and observation to maximum (2) <br> - 2, 4 - DNP / Brady's reagent <br> Observation + logical deduction <br> - Iodoform test <br> Observation + logical deduction <br> - Fehling's / Tullens/ acidiefied dichromate (VI) <br> Observation + logical deduction <br> - Aqueous $\mathrm{AgNO}_{3}$ - could be preceded by $\mathrm{NaOH}+\mathrm{HNO}_{3}$ <br> Observation + logical deduction <br> If identity of compound is assumed then each test (0) but observation (1). <br> Ignore conditions throughout. |  |  | 7 |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |

Group 1 (6246/01A): this practical test must be taken on the day specified on the official timetable, and is available to Home Centres, International Teaching Institutions and International Centres.

## Apparatus and Materials

## Apparatus

1. eight test tubes in a test tube rack;
2. $10 \mathrm{~cm}^{3}, 25 \mathrm{~cm}^{3}$ or $50 \mathrm{~cm}^{3}$, and $100 \mathrm{~cm}^{3}$ measuring cylinders;
3. a supply of dropping pipettes;
4. spatula;
5. access to balance weighing to at least 0.01 g ;
6. one $250 \mathrm{~cm}^{3}$ beaker;
7. one $250 \mathrm{~cm}^{3}$ volumetric flask with stopper;
8. funnel to fit volumetric flask;
9. glass rod;
10. $50.0 \mathrm{~cm}^{3}$ burette, in stand and clamp, with small funnel for filling;
11. small beaker for draining burette;
12. $25.0 \mathrm{~cm}^{3}$ pipette and safety filler;
13. white tile;
14. two $250 \mathrm{~cm}^{3}$ conical flasks;
15. a supply of hot water (about $70^{\circ} \mathrm{C}$ ) and a $250 \mathrm{~cm}^{3}$ beaker for a water bath;
16. access to fume cupboard.

## Materials

Each candidate will require:
(a) * $200 \mathrm{~cm}^{3}$ of aqueous (potassium manganate(VII), $\mathrm{KMnO}_{4}$, of concentration $0.0200 \mathrm{~mol} \mathrm{dm}^{-3}$ labelled Solution A. The concentration of this solution is not to be disclosed to candidates;
(b) ${ }^{*}$ between 8.9 g and 9.1 g of ammonium iron(II) sulphate, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot \mathrm{FeSO}_{4} \cdot 6 \mathrm{H}_{3} \mathrm{O}$. in a stoppered weighing bottle or similar labelled $\mathbf{B}$;
(c)* $10 \mathrm{~cm}^{3}$ of aqueous iron(III) chloride of concentration $0.25 \mathrm{~mol} \mathrm{dm}^{-3}$ labelled $\mathbf{C}$. The identity of this solution is not to be disclosed to candidates;
(d)* $10 \mathrm{~cm}^{3}$ of aqueous cobalt(II) sulphate of concentration $0.25 \mathrm{~mol} \mathrm{dm}^{-3}$ labelled $\mathbf{D}$. The identity of this solution is not to be disclosed to candidates;
(e) ${ }^{*} 5 \mathrm{~cm}^{3}$ of propan-2-ol labelled $\mathbf{E}$. The identity of this compound is not to be disclosed to candidates;
(f) $200 \mathrm{~cm}^{3}$ of dilute sulphuric acid; concentration approximately $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$, labelled dilute sulphuric acid;
(g) $15 \mathrm{~cm}^{3}$ of dilute sodium hydroxide; concentration approximately $0.5 \mathrm{~mol} \mathrm{dm}^{-3}$;
(h) $5 \mathrm{~cm}^{3}$ of dilute sulphuric acid; concentration approximately $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$;
(i) $5 \mathrm{~cm}^{3}$ of dilute hydrochloric acid; concentration approximately $2.0 \mathrm{~mol} \mathrm{dm}^{-3}$;
(j) $5 \mathrm{~cm}^{3}$ of aqueous barium chloride; concentration approximately $0.2 \mathrm{~mol} \mathrm{dm}{ }^{-3}$;
(k) $5 \mathrm{~cm}^{3}$ of aqueous potassium iodide; concentration approximately $0.5 \mathrm{~mol} \mathrm{dm}^{-3}$;
(l) $5 \mathrm{~cm}^{3}$ of aqueous potassium dichromate(VI); concentration approximately $0.20 \mathrm{~mol} \mathrm{dm}^{-3}$;
(m) access to a bottle of concentrated hydrochloric acid;
(n) access to a bottle of phosphorus pentachloride;
(o) $10 \mathrm{~cm}^{3}$ of iodine/potassium iodide solution made by adding 2 g iodine to 6 g potassium iodide dissolved in $100 \mathrm{~cm}^{3}$ water and labelled aqueous iodine;
(p) $5 \mathrm{~cm}^{3}$ of freshly prepared aqueous starch; concentration approximately $1 \%$;
(q) blue and red litmus paper;
(r) a supply of distilled water.

[^1]6246/01B

| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 1 (a) | Table 1 <br> Both weighings recorded in correct spaces to at least 2 dp (1) <br> Weighings correctly subtracted (1) <br> [ $\downarrow$ RHS of Table 1] <br> Table 2 <br> Check subtractions and averaging arithmetic correcting if necessary. <br> All volumes recorded to $0.05 \mathrm{~cm}^{3}$ (1) <br> Allow one slip but withhold this mark if any readings are in the wrong boxes. <br> Allow 0, 0.0, 0.00 as initial volume. <br> NOT 50 as initial volume. <br> All subtractions completed correctly <br> top RHS of Table 2] <br> Mean titre <br> For correct averaging of chosen titres, correctly subtracted or for choosing identical titres and for recording the mean correct to 2 or more dp or to $0.05 \mathrm{~cm}^{3}$ [unless already penalised in Table 2] (1) [ $\checkmark$ by the mean in space or near the dotted line in paragraph below] <br> Accuracy <br> If the candidate has made an arithmetical error in Table 2 or in averaging then the examiner must calculate a new average. <br> - For an averaging error simply calculate a new value using the candidate's chosen values <br> - If a wrongly subtracted titre has been used in the mean then choose any two identical titres or take an average of the closest two. <br> Home centres <br> For each candidate calculate <br> *mass $\mathbf{G} \times 2.55=$ expected titre <br> [*corrected if necessary] <br> International centres <br> For each candidate calculate <br> Supervisor's mean titre $\times$ candidate's mass $\mathbf{G}$ <br> Supervisor's mass G <br> = expected titre <br> Calculate the difference(d) between the candidate's mean titre and the expected titre. <br> Record the difference as $\mathbf{d}=\ldots \ldots . \quad \text { on the script }$ <br> Award marks for accuracy as follows <br> The range( $(r)$ is the difference between the outermost titres used to calculate the mean. If the examiner has corrected titres because of incorrect subtraction then award the range on the corrected titres used by the examiner to calculate the mean. |  |  | 12 |



| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ (b)(i) | Moles $\mathrm{MnO}_{4}{ }^{-}$in mean titre <br> $=\frac{\text { mean titre } \times 0.0200}{1000}$ <br> Ignore units <br> Answer to at least 3 SF | Penalise SF once <br> only in (i) and (ii) and <br> allow loss of trailing <br> zeros if correct <br> arithmetically in (i) <br> and (ii) |  | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ (b)(ii) | Moles $\mathrm{Fe}^{2+}$ <br> $=$ moles $\mathrm{MnO}_{4}-$ in mean titre <br> x 5 in $25.0 \mathrm{~cm}^{3}$ <br> Ignore units <br> Answer to at least 3 SF |  |  | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ (b)(iii) | Moles Fe ${ }^{2+}$ <br> $=$ answer to (b)(ii) $\times 10$ (1) <br> in $250 \mathrm{~cm}^{3}$ <br> Mass Fe ${ }^{2+}$ in $250 \mathrm{~cm}^{3}=$ <br> above answer x 55.9 (1) | Use of 56 |  |  |
| \% Fe ${ }^{2+}$ by mass |  |  |  |  |
| $=\underline{\text { above answerx 100\% }}$Mass of G from Table 1 <br> and to 3 SF only e.g. 14.6 \% <br> (1) <br> lgnore units | $\mathbf{3}$ |  |  |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ (c) | Excess / unreacted $\mathrm{KMnO}_{4}$ <br> (colours solution in flask) |  |  | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2 ~ ( a ) ~}$ | Observations <br> Blue precipitate (1) <br> Insoluble in excess (1) <br> Inference <br> $\mathrm{Cu}(\mathrm{OH})_{2} / \operatorname{copper(II)~hydroxide~}$ <br> $(\mathbf{1 )}$ | $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right]$ |  | $\mathbf{3}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2 ~ ( b ) ( i ) ~}$ | Observations <br> (Goes) brown (1) <br> lgnore any ppt <br> Blue / Black / Blue-black (1) <br> Ignore any ppt <br> Inference <br> lodine /I2 /copper(I) <br> iodide/Cul (1) | $\mathrm{Cu}_{2} \mathrm{I}_{2}$ | I | $\mathbf{3}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2 ~ ( b ) ( i i ) ~}$ | $2 \mathrm{Cu}^{2+}+4 I^{-} \rightarrow 2 \mathrm{Cul} / \mathrm{Cu}_{2} \mathrm{I}_{2}$ <br> $+\mathrm{I}_{2}$ <br> [Ignore state symbols] |  | $\mathbf{1}$ |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2 ( c ) ( i )}$ | Observation <br> Yellow / green (solution) (1) <br> Inference <br> $\left[\mathrm{CuCl}_{4}\right]^{2-}(\mathbf{1 )}$ |  |  | $\mathbf{2}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2 ~ ( c ) ( i i ) ~}$ | Ligand exchange / <br> substitution |  |  | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2 ( d )}$ | Observations <br> Green precipitate (1) <br> Insoluble in excess (1) <br> Inference <br> $\mathrm{Ni}(\mathrm{OH})_{2} /$ nickel hydroxide or <br> $\mathrm{Fe}(\mathrm{OH})_{2}$ /iron (II) hydroxide (1) | $\left[\mathrm{Ni}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] /$ <br> $\left[\mathrm{Fe}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$ | Any Cr compound |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2 ( e )}$ | Observation <br> White precipitate (1) <br> Inference <br> $\mathrm{NiSO}_{4}(\mathbf{1 )}$ | Allow FeSO <br> 4 <br> answer a cq | (Any) green ppte | $\mathbf{2}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Rej ect | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3 ~ ( a ) ~}$ | Observation <br> (Orange to) green / blue (1) |  |  | $\mathbf{3}$ |
|  | Inferences <br> Oxidation (1) <br> Primary, secondary alcohol, <br> aldehyde; all three for (1) | Dichromate oxidises | Redox /reduction <br> K is a reducing agent <br> $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \rightarrow 2 \mathrm{Cr}^{3+}$ |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3 ~ ( b ) ~}$ | Observation <br> sweet / fruity/ glue smell (1) <br> Inferences <br> ester (1) <br> K is (primary or secondary) <br> alcohol / 'not an aldehyde' if <br> follows 3rd |  |  | $\mathbf{3}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3 ~ ( c ) ~}$ | Observation <br> (Pale) yellow precipitate (1) <br> Inferences <br> lodoform / tri-iodomethane <br>  <br> $\mathrm{CHI}_{3}(\mathbf{1})$ <br> $\mathrm{CH}_{3} \mathrm{CHOH} /$ methyl <br> secondary alcohol (or <br> ethanol) (1) |  | Any answer including <br> methyl ketone $/ \mathrm{CH}_{3} \mathrm{CO} /$ <br> ethanal | $\mathbf{3}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 3 (d) | $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}_{3}$ | Full structural / <br> skeletal formula | -H —O bond | $\mathbf{1}$ |

## 3 (c), (d)

If no ppt observed in (c) then may allow $3^{\text {rd }}$ mark in (c) for e.g. 'not methyl secondary alcohol (or ethanol)' then allow butan-1-ol in (d).


Group 2 (6246/01B): this practical test must be taken on the day specified on the official timetable, and is available to Home Centres, International Teaching Institutions and International Centres.

## Apparatus and Materials

## Apparatus

Each candidate will require:

1. seven test tubes in a test tube rack;
2. $\quad 10 \mathrm{~cm}^{3}, 25 \mathrm{~cm}^{3}$ or $50 \mathrm{~cm}^{3}$, and $100 \mathrm{~cm}^{3}$ measuring cylinders;
3. a supply of dropping pipettes;
4. spatula;
5. one $100 \mathrm{~cm}^{3}$ beaker;
6. access to balance weighing to at least 0.01 g ;
7. one $250 \mathrm{~cm}^{3}$ beaker;
8. one $250 \mathrm{~cm}^{3}$ volumetric flask with stopper;
9. funnel to fit volumetric flask;
10. glass rod;
11. $50.0 \mathrm{~cm}^{3}$ burette, in stand and clamp, with small funnel for filling;
12. small beaker for draining burette;
13. $25.0 \mathrm{~cm}^{3}$ pipette and safety filler;
14. white tile;
15. two $250 \mathrm{~cm}^{3}$ conical flasks;
16. a supply of hot water (about $70^{\circ} \mathrm{C}$ ) and a $250 \mathrm{~cm}^{3}$ beaker for a water bath.

## Materials

Each candidate will require:
(a) * $200 \mathrm{~cm}^{3}$ of aqueous (potassium manganate(VII). $\mathrm{KMnO}_{4}$ ) of concentration $0.0200 \mathrm{~mol} \mathrm{dm}^{-3}$ labelled Solution F;
(b) ${ }^{*}$ Between 8.9 g and 9.1 g of ammonium iron(II) sulphate, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot \mathrm{FeSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, in a stoppered weighing bottle or similar labelled $\mathbf{G}$. The identity of this compound is not to be disclosed to candidates;
(c)* $10 \mathrm{~cm}^{3}$ of aqueous copper(II) sulphate of concentration $0.25 \mathrm{~mol} \mathrm{dm}^{-3}$ labelled $\mathbf{H}$. The identity of this solution is not to be disclosed to candidates;
(d)* $10 \mathrm{~cm}^{3}$ of aqueous nickel(II) sulphate of concentration $0.25 \mathrm{~mol} \mathrm{dm}^{-3}$ labelled $\mathbf{J}$. The identity of this solution is not to be disclosed to candidates;
(e)* $5 \mathrm{~cm}^{3}$ of butan-2-ol labelled $\mathbf{K}$. The identity of this compound is not to be disclosed to candidates;
(f) $200 \mathrm{~cm}^{3}$ of dilute sulphuric acid; concentration approximately $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$, labelled dilute sulphuric acid;
(g) $15 \mathrm{~cm}^{3}$ of dilute sodium hydroxide; concentration approximately $0.5 \mathrm{~mol} \mathrm{dm}^{-3}$;
(h) $5 \mathrm{~cm}^{3}$ of dilute sulphuric acid; concentration approximately $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$;
(i) $5 \mathrm{~cm}^{3}$ of dilute hydrochloric acid; concentration approximately $2.0 \mathrm{~mol} \mathrm{dm}^{-3}$;
(j) $5 \mathrm{~cm}^{3}$ of aqueous barium chloride; concentration approximately $0.2 \mathrm{~mol} \mathrm{dm}^{-3}$;
(k) $5 \mathrm{~cm}^{3}$ of aqueous potassium iodide; concentration approximately $0.5 \mathrm{~mol} \mathrm{dm}{ }^{-3}$;
(l) $5 \mathrm{~cm}^{3}$ of aqueous potassium dichromate(VI); concentration approximately $0.20 \mathrm{~mol} \mathrm{dm}^{-3}$;
(m) access to a bottle of concentrated hydrochloric acid;
(n) access to a bottle of concentrated sulphuric acid;
(o) $1 \mathrm{~cm}^{3}$ of ethanoic acid in a stoppered test tube labelled ethanoic acid;
(p) $60 \mathrm{~cm}^{3}$ of aqueous sodium carbonate; concentration approximately $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$;
(q) $10 \mathrm{~cm}^{3}$ of iodine/potassium iodide solution made by adding 2 g iodine to 6 g potassium iodide dissolved in $100 \mathrm{~cm}^{3}$ water and labelled aqueous iodine;
(r) $5 \mathrm{~cm}^{3}$ of freshly prepared aqueous starch; concentration approximately $1 \%$;
(s) a supply of distilled water.

[^2]

| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ (b)(i) | Moles of Fe <br> = mass S used <br> 392 <br> Ignore units <br> Answer to at least 3 SF | Penalise SF once <br> only in (i) and (ii) and <br> allow loss of trailing <br> zeros if correct <br> arithmetically in (i) <br> and (ii) |  | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 ( b ) ( i i )}$ | Conc $^{\text {n }} \mathrm{Fe}^{2+}$ salt <br> $=$ above answer $\times \frac{1000}{250}$ <br> Ignore units <br> Answer to at least 3SF |  |  | $\mathbf{1}$ |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 1 (b)(iii) | Moles $\mathrm{Fe}^{2+}$ in $25.0 \mathrm{~cm}^{3}$ $=$ answer to (b)(ii) $\times \frac{25.0}{1000}(1)$ <br> Moles $\mathrm{MnO}_{4}^{-}$in mean titre $\begin{equation*} =\frac{\text { moles } \mathrm{Fe}^{2+} \text { in } 25.0 \mathrm{~cm}^{3}}{5} \tag{1} \end{equation*}$ <br> $\mathrm{Conc}^{\mathrm{n}} \mathrm{MnO}_{4}^{-}=$moles $\mathrm{MnO}_{4}^{-}$ in mean titre $\times 1000$ (1) mean titre Answer to 3 SF only Ignore units |  |  | 3 |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 ( c )}$ | Either $\mathrm{KMnO}_{4}$ acts as own <br> indicator or excess / <br> unreacted $\mathrm{KMnO}_{4}$ colours <br> solution in flask or description <br> of colour change in flask. |  |  | $\mathbf{1}$ |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 2 (a) | Observations <br> White precipitate (1) <br> Soluble / dissolves in excess / <br> colourless solution(1) <br> Inferences <br> $\mathrm{Al}(\mathrm{OH})_{3} /\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}\right](1)$ <br> $\left[\mathrm{Al}(\mathrm{OH})_{6}\right]^{3-} /\left[\mathrm{Al}(\mathrm{OH})_{4}\right]^{-}$(1) <br> $2^{\text {nd }}$ inference mark is <br> conditional on $2^{\text {nd }}$ <br> observation. | Goes clear $\begin{aligned} & \mathrm{AlO}_{2}^{-} / \mathrm{NaAlO}_{2} / \\ & \mathrm{NaAl}^{(\mathrm{OH})_{4} /} \\ & \mathrm{Na}_{3} \mathrm{Al}(\mathrm{OH})_{6} \\ & \text { Equivalent } \mathrm{Pb} / \mathrm{Sn} \\ & \text { species. } \end{aligned}$ | Zn compounds | 4 |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 2 (b) | Observation <br> White precipitate (1) <br> Inference <br> $\mathrm{AgCl} /$ silver chloride (1) |  |  | 2 |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 2 (c) | $\mathrm{AlCl}_{3}$ |  | $\mathrm{PbCl}_{2}$ <br> $\mathrm{Al}_{2} \mathrm{Cl}_{6}$ | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 2 (d) | Observations <br> Brown precipitate (1) <br> Insoluble in excess (1) <br> Inference <br> $\mathrm{Fe}(\mathrm{OH})_{3} /$ Iron(III) hydroxide <br> (1) | Foxy-red | $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}\right]$ |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 2 (e)(i) | Observations <br> Brown / orange / red <br> (solution) (1) <br> Blue / Black / Blue-black (1) <br> Ignore any ppts <br> Inference lodine $/ \mathrm{I}_{2} / \mathrm{KI}_{3}(1)$ | I | $\mathbf{3}$ |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 2 (e)(ii) | $2 \mathrm{Fe}^{3+}+2 \mathrm{I}^{-} \longrightarrow 2 \mathrm{Fe}^{2+}+\mathrm{I}_{2}$ <br> Ignore state symbols $^{2}$ |  | $\mathbf{1}$ |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 2 (f) | $\mathrm{FeCl}_{3}$ |  |  | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3 ~ ( a )}$ | Observation <br> (Orange to) green / blue (1) <br> Inferences <br> Oxidation (1) <br> Primary, secondary alcohol, <br> aldehyde; all three for (1) | Dichromate oxidises | Redox / reduction <br> X is a reducing agent <br> $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-} \longrightarrow 2 \mathrm{Cr}^{3+}$ | $\mathbf{3}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 3 (b) | Observation <br> effervescence / bubbles (1) <br> Inference <br> carboxylic $/ \mathrm{COOH} / \mathrm{CO}_{2} \mathrm{H}$ <br> acid (1) |  | Gas evolved | $\mathbf{2}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3 ~ ( c ) ~}$ | Observation <br> sweet / fruity / glue smell (1) <br> Inferences <br> ester (1) <br> X is (primary or secondary) <br> alcohol /'not an aldehyde' if <br> follows 3 | . | Ester smell as <br> observation |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3}$ (d) | $\mathbf{X}$ | $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}(1)$ | Full structural / <br> skeletal formula | $-\mathrm{H}-\mathrm{O}$ bond | $\mathbf{2}$ |
| $\mathbf{Y}$ | $\mathrm{CH}_{3} \mathrm{COOH}(1)$ |  |  |  |  |

| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 4 | T1 |  |  | 7 |
|  | Candidate's test on all four |  |  |  |
|  | compounds |  |  |  |
|  | R1 ${ }$ |  |  |  |
|  | Observation and inference from |  |  |  |
|  | test on all four compounds |  |  |  |
|  | T2 |  |  |  |
|  | Candidate's second test |  |  |  |
|  | R2 |  |  |  |
|  | Observation and inference from |  |  |  |
|  | second test |  |  |  |
|  | T3 ${ }^{\text {r }}$ |  |  |  |
|  | Candidate's third test |  |  |  |
|  | R3 |  |  |  |
|  | Observation and inference from |  |  |  |
|  | third test |  |  |  |
|  | L` |  |  |  |
|  | Remaining compound is hexane |  |  |  |
|  | Tests and observations / inferences |  |  |  |
|  | which can be done in any order. |  |  |  |
|  | Each |  |  |  |
|  | test and observation to maximum (2) |  |  |  |
|  | -2, 4 - DNP / Brady's reagent |  |  |  |
|  | Observation + logical deduction |  |  |  |
|  | - lodoform test |  |  |  |
|  | Observation + logical deduction |  |  |  |
|  | - Fehling's / Tollens/ acidified dichromate (VI) |  |  |  |
|  | Observation + logical deduction |  |  |  |
|  | - $\mathrm{NaOH}+\mathrm{HNO}_{3}+\mathrm{Ag} \checkmark \mathrm{NO}_{3}$ |  |  |  |
|  | Observation + logical deduction |  |  |  |
|  | If identity of compound is assumed then each test (0) but observation (1). |  |  |  |
|  | each test (0) but observation (1). |  |  |  |

Group 3 (6246/01C): this practical test is only available to International Teaching Institutions and International Centres. The date of this practical test MUST be agreed in advance through submission of Form ES-F8-MJ2009 found in the International Information Manual.

## Apparatus and Materials

## Apparatus

Each candidate will require:

1. five test tubes in a test tube rack;
2. $10 \mathrm{~cm}^{3}, 25 \mathrm{~cm}^{3}$ or $50 \mathrm{~cm}^{3}$, and $100 \mathrm{~cm}^{3}$ measuring cylinder;
3. a supply of dropping pipettes;
4. spatula;
5. one $100 \mathrm{~cm}^{3}$ beaker;
6. access to balance weighing to at least 0.01 g ;
7. one $250 \mathrm{~cm}^{3}$ beaker;
8. one $250 \mathrm{~cm}^{3}$ volumetric flask with stopper;
9. funnel to fit volumetric flask;
10. glass rod;
11. $50.0 \mathrm{~cm}^{3}$ burette, in stand and clamp, with small funnel for filling;
12. small beaker for draining burette;
13. $\quad 25.0 \mathrm{~cm}^{3}$ pipette and safety filler;
14. white tile;
15. two $250 \mathrm{~cm}^{3}$ conical flasks;
16. a supply of hot water (about $70^{\circ} \mathrm{C}$ ) and a $250 \mathrm{~cm}^{3}$ beaker for a water bath.

## Materials

Each candidate will require:
(a) $200 \mathrm{~cm}^{3}$ of aqueous potassium manganate(VII), $\mathrm{KMnO}_{4}$, of concentration $0.0200 \mathrm{~mol} \mathrm{dm}^{-3}$ labelled Solution R. The concentration of this solution is not to be disclosed to candidates;
(b) between 8.9 g and 9.1 g of ammonium iron(II) sulphate, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot \mathrm{FeSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, in a stoppered weighing bottle or similar labelled $\mathbf{S}$;
(c) $\quad 10 \mathrm{~cm}^{3}$ of aqueous aluminium chloride of concentration $0.25 \mathrm{~mol} \mathrm{dm}^{-3}$ labelled $\mathbf{V}$. The identity of this solution is not to be disclosed to candidates;
(d) $10 \mathrm{~cm}^{3}$ of aqueous iron(III) chloride of concentration $0.25 \mathrm{~mol} \mathrm{dm}^{-3}$ labelled $\mathbf{W}$. The identity of this solution is not to be disclosed to candidates;
(e) $5 \mathrm{~cm}^{3}$ of ethanol labelled $\mathbf{X}$. The identity of this compound is not to be disclosed to candidates;
(f) two $2 \mathrm{~cm}^{3}$ portions of ethanoic acid; one in a stoppered boiling tube and one in a stoppered test tube, both labelled $\mathbf{Y}$;
(g) $200 \mathrm{~cm}^{3}$ of dilute sulphuric acid; concentration approximately $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$, labelled dilute sulphuric acid;
(h) $15 \mathrm{~cm}^{3}$ of dilute sodium hydroxide; concentration approximately $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$;
(i) $5 \mathrm{~cm}^{3}$ of dilute sulphuric acid; concentration approximately $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$;
(j) $5 \mathrm{~cm}^{3}$ of dilute nitric acid; concentration approximately $2.0 \mathrm{~mol} \mathrm{dm}^{-3}$;
(k) $5 \mathrm{~cm}^{3}$ of aqueous silver nitrate; concentration $0.05 \mathrm{~mol} \mathrm{dm}^{-3}$;
(l) $5 \mathrm{~cm}^{3}$ of aqueous potassium iodide; concentration approximately $0.5 \mathrm{~mol} \mathrm{dm}^{-3}$;
(m) $5 \mathrm{~cm}^{3}$ of aqueous potassium dichromate(VI); concentration approximately $0.20 \mathrm{~mol} \mathrm{dm}^{-3}$;
(n) access to a bottle of solid sodium hydrogencarbonate;
(o) access to a bottle of concentrated sulphuric acid;
(p) $60 \mathrm{~cm}^{3}$ of aqueous sodium carbonate; concentration approximately $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$;
(q) $5 \mathrm{~cm}^{3}$ of freshly prepared aqueous starch; concentration approximately $1 \%$;
(r) a supply of distilled water.

6246/02

| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ (a)(i) | Cell potential $=(+) 0.67(V)($ so <br> reaction is feasible) (1) | $E^{\circ}$ for I $2 /$ I- larger / <br> more positive than <br> for ascorbic acid <br> Or vice versa | Just 'E is <br> positive' | $\mathbf{2}$ |
| ratio ascorbic:iodine $=1: 1$ (1) | Overall correct <br> equation can score <br> second mark |  |  |  |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 1 (a)(ii) | $\begin{align*} & \text { Amount iodate(V) used } \\ & \quad=0.02083 \mathrm{dm}^{3} \times 0.01\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \\ & =2.083 \times 10^{-4}(\mathrm{~mol})(\mathbf{1}) \tag{1} \end{align*}$ <br> Ratio $\mathrm{IO}_{3}{ }^{-}$: ascorbic acid $=1: 3$ <br> $\therefore$ amount ascorbic acid $=6.249 \times 10^{-4}(\mathrm{~mol})(\mathbf{1})$ <br> $\therefore$ mass ascorbic acid $=6.249 \times 10^{-4} \times 176(1)$ <br> consequential on moles $=0.11 \mathrm{~g}(\mathbf{1})$ <br> Answer with unit to $\mathbf{2} \mathbf{2}$ sf with no rounding errors <br> Correct answer with no working (4) If fail to use correct ratio, penalise 1 mark e.g. 1:1 gives 0.0367 which then scores 3 | Mark Cq on their ratio in (a)(i) | 0.10 | 4 |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ (b)(i) | First mark <br> Identify hydrogen bond (1) <br> Second mark <br> Either <br> $\delta^{+}$H on ascorbic acid <br> attracted to lone pair/ to $\delta^{-\quad}$ oxygen <br> atom on water <br> Or <br> $\delta^{+}$H on water attracted to lone pair/ <br> $\delta^{\text {oxygen of OH groups on ascorbic }}$ <br> acid (1) <br> Third mark <br> Many places for hydrogen bonds (in <br> ascorbic acid) (1) |  |  |  |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 1 (b)(ii) |  |  |  | 1 |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2 ~ ( a ) ( i )}$ |  | All dots or all crosses |  |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2 ~ ( a ) ( i i ) ~}$ | C=C electrophilic (addition) (1) |  | Substitution | 3 |
|  | C=O nucleophilic (addition) (1) <br> Third mark <br> C=O polar (but C=C not) <br> Or <br> C is $\delta+$ in C=O <br> Or <br> C=C has high electron density (1) <br> Note: Third mark can be awarded <br> from an explanation of the <br> mechanism |  |  |  |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 2 (b) | $R$. <br> (1) <br> Note <br> Ignore any use of half arrows Use of full arrows max 1 Ignore termination step | Accept attack on the other carbon in $C=C$, i.e. the one bearing the cyanide. | Radical on the cyanide group. This scores zero as the result is not this polymer | 2 |


| Question <br> Number | Correct Answer | Acceptable <br> Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2 ~ ( c ) ( i ) ~}$ | Conditions mark conditional on <br> correct reagent <br> LiAlH $_{4}(\mathbf{1})$ in dry ether (1) (followed by <br> acid hydrolysis) <br> OR <br> NaBH (1) in water/ alcohol(1) <br> OR <br> hydrogen (1) with platinum/ <br> palladium (catalyst) (1) <br> OR <br> sodium (1) in ethanol (1) | Ni at $150^{\circ} \mathrm{C} /$ heat |  |  |


| Question <br> Number | Correct Answer | Acceptable <br> Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2 ~ ( c ) ( i i ) ~}$ | Conditional on reagent in (i) <br> If sodium chosen: no, because reagent <br> too expensive (1) <br> OR <br> If LiAlH $\mathrm{H}_{4}$ or $\mathrm{NaBH}_{4}$ chosen: no, because <br> reagent too expensive (1) <br> OR <br> If $\mathrm{H}_{2}$ chosen: yes, because reaction <br> gives no other products / hydrogen is <br> cheap/ product is easily separated <br> from the catalyst (1) | Just "batch <br> process" | $\mathbf{1}$ |  |


| Question <br> Number | Correct Answer | Acceptable <br> Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2 ~ ( c ) ( i i i ) ~}$ |  | Amide group may <br> be represented as <br> NHCO etc |  | $\mathbf{2}$ |
|  | (1) for the repeating unit <br> Allow if more than one given <br> (1) for $\mathrm{HCl} /$ hydrogen chloride |  | hydrochloric <br> acid, $\mathrm{HCl}(\mathrm{aq})$ |  |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 2 (d) | Either: <br> Bonds broken $612+360+463 /=1435$ <br> Bonds made $412+348+743 /=1503 \Delta \mathrm{H}=-68 \mathrm{~kJ}$ $\mathrm{mol}^{-1}$ (1) <br> Exothermic so reaction will take place/ vinyl alcohol thermodynamically unstable (1) Cq on their values as long as $\Delta \mathrm{H}$ is negative <br> OR <br> adds up all the bond energies for vinyl alcohol to get $2671 \mathrm{~kJ} \mathrm{~mol}^{-1}$ <br> and for ethanal to get $2739 \mathrm{~kJ} \mathrm{~mol}^{-1} \Delta \mathrm{H}=-68$ $\mathrm{kJ} \mathrm{mol}^{-1}$ (1) <br> Exothermic so reaction will take place/ vinyl alcohol thermodynamically unstable (1) | -68 with no working scores first mark | Any positive value scores 0 overall <br> Kinetically unstable <br> Kinetically unstable | 2 |


| Question <br> Number | Correct Answer | Acceptable | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2 ( e )}$ | Eanswers mark standalone |  |  |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2}$ (f)(i) | C |  |  |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2 ~ ( f ) ( i i ) ~}$ | Restricted rotation about the <br> $\mathrm{C}=$ N/ double bond (1) | No rotation (at rtp) <br> about the C=N/ double <br> bond |  | $\mathbf{2}$ |
|  | N atom has a lone pair of <br> electrons (and another group) <br> (1) |  |  |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2 ~ ( f ) ( i i i ) ~}$ | CH: (1) | 90 degree bond angles <br> around the carbon/ <br> nitrogen | 180 degree bond <br> angle around <br> nitrogen | $\mathbf{1}$ |
|  | Must be the trans/anti |  |  |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3 ~ ( a ) ( i ) ~}$ | Diagram <br> Water drawn V-shaped with H- <br> O-H bond angle marked <br> between $106^{\circ}$ and $102^{\circ}$. (1) <br> Shape Explanation <br> V-shape because <br> Either <br> 2 b.p. and 2 I.p. repel as far <br> apart as possible / minimum <br> repulsion / maximum <br> separation <br> or <br> 4 electron pairs repel as far <br> apart as possible / minimum <br> repulsion / maximum <br> separation (1) <br> Ignore any reference to <br> relative repulsions <br> Polarity (standalone mark) <br> Polar because individual bond <br> polarities don't cancel (1) | The number of Ione pairs <br> can be shown on diagram | Bolecule is not <br> shown on diagram) and <br> symmetrical | Charges don't <br> sancel |


| Question <br> Number | Correct Answer | Acceptable <br> Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3 ~ ( a ) ( i i ) ~}$ | EITHER <br> Polar water molecules attracted to/ bond with <br> the ions <br> OR <br> $\delta^{+}$H attracted to anion / <br> $\delta^{-} 0$ attracted to cation (1) <br>  <br>  <br>  <br> which is an exothermic process which offsets <br> the endothermic lattice energy (1) |  |  | $\mathbf{2}$ |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 3 (a)(iii) | First mark <br> species with state symbols (1) <br> Allow one state symbol omitted <br> ignore aq on left <br> Second mark <br> labelling of lattice and hydration enthalpies (1) <br> numbers or symbols <br> if lattice energy arrow drawn downwards it <br> must be labelled ( + ) $\Delta \mathrm{H}_{\text {latt }}$ or -670 <br> Third mark Stand alone $\begin{aligned} \Delta H_{\text {solution }} & =(+670)+(-322)+(-335) \\ & =(+) 13\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)(\mathbf{1}) \end{aligned}$ | Drawn as energylevel diagram |  | 3 |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3 ( b ) ( i )}$ | $2\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+{ }^{1 / 2} \mathrm{O}_{2}+2 \mathrm{H}^{+} \rightarrow$ <br> $2\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+\mathrm{H}_{2} \mathrm{O}(\mathbf{1})$ | If use cyanide in equation, +0.87 <br> scores second mark only |  | $\mathbf{2}$ |
| $\mathrm{E}^{\circ}=(+) 0.46(\mathrm{~V})$ so feasible (1) | (1) <br> positive than $\mathrm{E}^{\circ}$ for first <br> reaction |  |  |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3}$ (b)(ii) | $\mathrm{E}^{\circ}=+0.87 \mathrm{~V}$ so <br> (thermodynamically) is more <br> favoured (1) | $\mathrm{E}^{\circ}$ for cyano overall reaction <br> $>/$ more positive than $\mathrm{E}^{\circ}$ for <br> aqua overall reaction <br> so more likely | $\mathbf{1}$ |  |

\(\left.$$
\begin{array}{|l|l|l|l|l|}\hline \begin{array}{l}\text { Question } \\
\text { Number }\end{array} & \text { Correct Answer } & \text { Acceptable Answers } & \text { Reject } & \text { Mark } \\
\hline \mathbf{3 ~ ( c ) ( i ) ~} & \begin{array}{l}\mathrm{SiCl}_{4}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{SiO}_{2}+4 \mathrm{HCl}(\mathbf{1}) \\
\text { Ignore any state symbols }\end{array} & \begin{array}{l}\mathrm{SiCl} \\
4\end{array}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \\
\mathrm{Si}(\mathrm{OH})_{4}+4 \mathrm{HCl}(1) \\
{\text { Allow } \mathrm{SiO}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}}\end{array}
$$ \begin{array}{l}Do not allow partial <br>

hydrolysis.\end{array}\right]\)| $\mathbf{1}$ |
| :--- |


| Question <br> Number | Correct Answer | Acceptable <br> Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3}$ (c)(ii) | Common mark <br> Oxygen lone pair to attack the <br> carbon atom (1) <br> Then <br> If mix and match, mark the <br> 'either' route out of 2 and <br> mark 'or' route out of 2 and <br> award the higher mark <br> Either <br> Carbon has no 2d/ energetically <br> available orbitals (1) <br> C-Cl bond would have to break <br> first (1) <br> OR <br> Chlorine atoms larger than <br> carbon atoms (1) <br> (Water) sterically hindered from <br> attacking (1) | References to Cl ions or <br> $\mathrm{Cl}^{-}$in place of Cl atoms <br> max 2 | $\mathbf{3}$ |  |


| Question <br> Number | Correct Answer | Acceptable <br> Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3}$ (d) | Chloride ions deprotonate water <br> (which has been polarised by <br> magnesium ions) (1) <br> residue is MgO / magnesium <br> (2xide/ Mg(OH) $/$ magnesium <br>  <br> hydroxide (1) STAND ALONE | hydrolysed by <br> water (of <br> crystallisation) | $\mathbf{2}$ |  |


| Question <br> Number | Correct Answer | Acceptable <br> Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3}$ (e) | Same amount of each <br> halogenoalkane (1) <br> lgnore references about adding <br> alcohol <br> Add $\mathrm{AgNO}_{3}$ solution (1) <br> Ignore references to nitric acid <br> see which forms precipitate <br> first (1) | Same volume |  | $\mathbf{3}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{4 ( a ) ( i )}$ | Mass of acid in $1 \mathrm{dm}^{3}$ <br> concentrated acid <br> $=0.98 \times 1800 \mathrm{~g}$ <br> $=1764(\mathrm{~g})(1)$ <br> Concentration of acid $=1764 \mathrm{~g} \div$ <br> $98 \mathrm{~g} \mathrm{~mol}^{-1}$ <br> $=18\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)(1)$ <br> Correct answer with no working <br> scores 2 | Allow 1 mark for <br> 1800 divided by $98=$ <br> 18.37 |  |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 4 (a)(ii) | First ionisation of sulphuric acid <br> is complete (1) <br> This suppresses second <br> ionisation (therefore $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$is <br> very similar to that in HCl so <br> pH very similar) (1) |  | $\mathbf{2}$ |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{4 ( b ) ( i )}$ | $\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{NaCl} \rightarrow \mathrm{NaHSO}_{4}+\mathrm{HCl}$ <br> (1) | $\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaCl} \rightarrow$ <br> $\mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{HCl}$ |  | $\mathbf{1}$ |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 4 (b)(ii) | First mark: Trend <br> $\mathrm{Cl}^{-}<\mathrm{Br}^{-}<\mathrm{l}^{-}$(or names) (1) <br> stand alone <br> Second mark: evidence to support first mark <br> Either using numbers $\mathrm{I}^{-}$reduces the S in $\mathrm{SO}_{4}{ }^{2-}$ to the lowest o.s. of all whereas $\mathrm{Br}^{-}$ only to +4 and $\mathrm{Cl}^{-}$not at all Or using amount of change $I^{-}$lowers the oxidation number of sulphur the most (1) <br> Third mark: <br> Either <br> $\mathrm{I}^{-}$is the largest of the ions and loses electrons most easily/ attraction for outer electron is weakest Or <br> $\mathrm{Cl}^{-}$is the smallest of the ions and so attraction for outer electron is strongest (1) | Equivalent explanation based on $\mathrm{I}^{-}>\mathrm{Br}^{-}>\mathrm{Cl}^{-}$ from $6 \rightarrow 0$ or -2 | $\mathrm{Cl}<\mathrm{Br}<\mathrm{l}$, or the names of the halogens. Decreases scores 0 overall. <br> J ust "Iodide reduces the sulphuric acid more" | 3 |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 4 (c)(i) | Either <br> (Moist) red phosphorus (1) <br> iodine (1) <br> Or <br> phosphoric acid (1) |  | Just "phosphorus" | $\mathbf{2}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{4}$ (c)(ii) | If phosphorus + iodine or no <br> answer in (i) $\mathrm{PI}_{3}$ <br> Or <br> If phosphoric acid used or no <br> answer in (i) $\mathrm{HI}(\mathbf{1 )}$ | $\mathrm{PI}_{5}$ | $\mathrm{PI}_{3}$ from any other <br> source. | $\mathbf{1}$ |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 4 (d)(i) | (It is unbranched because) <br> Either <br> $\mathrm{m} / \mathrm{e} 29$ is caused by the ion $\mathrm{CH}_{3} \mathrm{CH}_{2}{ }^{+} / \mathrm{C}_{2} \mathrm{H}_{5}^{+}$charge essential Or $\mathrm{m} /$ e 29 means the molecule has a $\mathrm{C}_{2} \mathrm{H}_{5}$ group (1) |  |  | 1 |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 4 (d)(ii) | Bromo (no mark for this alone) <br> Either <br> molecular ion has m/ e 136 <br> and/ or 138 <br> Or <br> molecular ion peaks are two <br> units apart (1) <br> two peaks of same size <br> (differing by 2 mass units which <br> fits the 50/50 isotopic <br> composition of bromine) (1) | Argument that it <br> cannot be chloro or <br> iodo on basis of m/e <br> of molecular ion (1) <br> and some isotopic <br> justification (1) | Just "peak at 136 <br> and/ or 138" | $\mathbf{2}$ |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{4 ( e ) ( i )}$ | KOH in ethanol (both <br> needed) / ethanolic $\mathrm{KOH}(\mathbf{1})$ | " $\mathrm{NaOH} "$ for " $\mathrm{KOH} "$ |  | $\mathbf{1}$ |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 4(e)(ii) |  <br> (1) for both arrows  <br> $: B r^{\ominus}$ <br> (1) for carbocation $\longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{BrCH}_{2} \mathrm{CH}_{3}$ <br> Both arrows in step 1 (1) intermediate structure (1) arrow from bromide ion (1) Lone pair on $\mathrm{Br}^{-}$is not required Wrong alkene max 2. | Arrow from negative charge |  | 3 |


| Question <br> Number | Correct Answer | Acceptable <br> Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{4 ~ ( e ) ( i i i ) ~}$ | (Formation of 2- isomer is via) a secondary <br> carbocation (1) <br> which is more stable (than the primary <br> carbocation) (1) | Allow carbocation <br> with more alkyl <br> groups | Any argument based <br> on stability of product | $\mathbf{2}$ |

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN
Telephone 01623467467
Fax 01623450481
Email publications@linneydirect.com
Order Code UA021185 Summer 2009

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WC1V 7BH


[^0]:    For home centres (ONLY), the materials identified with an asterisk $(*)$ will be sent by a firm of manufacturing chemists.

[^1]:    For home centres (ONLY), the chemicals identified with an asterisk ( $*$ ) will be sent by a firm of manufacturing chemists.

[^2]:    For home centres (ONLY), the chemicals identified with an asterisk (*) will be sent by a firm of manufacturing chemists.

