

Mark Scheme Summer 2009

GCE

GCE Chemistry (8080/9080)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

Alternately, you can speak directly to a subject specialist at Edexcel on our dedicated Science telephone line: 0844 576 0037

Summer 2009 Publications Code UA021185 All the material in this publication is copyright © Edexcel Ltd 2009

Contents

1.	6241/01 Mark Scheme	5
2.	6242/01 Mark Scheme	17
3.	6243/01A Mark Scheme	27
4.	6243/01A Materials	32
5.	6243/01B Mark Scheme	33
6.	6243/01B Materials	38
7.	6243/01C Mark Scheme	39
8.	6243/01C Materials	44
9.	6243/02 Mark Scheme	45
10.	6244/01 Mark Scheme	51
11.	6245/01 Mark Scheme	65
12.	6246/01A Mark Scheme	75
13.	6246/01A Materials	80
14.	6246/01B Mark Scheme	81
15.	6246/01B Materials	86
16.	6246/01C Mark Scheme	87
17.	6246/01C Materials	92
18.	6246/02 Mark Scheme	93

General Marking Guidance

• All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

 \cdot Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

• Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.

• There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.

• All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

 \cdot Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

 \cdot When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.

 \cdot Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the mark scheme

1 / means that the responses are alternatives and either answer should receive full credit.

2 () means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

3 [] words inside square brackets are instructions or guidance for examiners.

4 Phrases/words in **bold** indicate that the meaning of the phrase or the actual word is **essential** to the answer.

5 OWTTE means or words to that effect

6 ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- · show clarity of expression
- · construct and present coherent arguments
- · demonstrate an effective use of grammar, punctuation and spelling.

Full marks will be awarded if the candidate has demonstrated the above abilities.

Questions where QWC is likely to be particularly important are indicated "QWC" in the mark scheme BUT this does not preclude others.

6241/01

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (a)	Similarity: same number of protons OR same proton number OR 7 protons (1)		Just "same atomic number" OR Any mention of electrons negates first mark	2
	Difference: different numbers of neutrons OR one has 7 and the other has 8 neutrons (1)	varying number of neutrons	different mass number OR different number of nucleons	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)	28, 29 and 30 OR +28, +29, +30 OR 28/1, 29/1, 30/1 OR 28:1, 29:1, 30:1 all 3 values correct (2) any 2 values correct (1)	28 ⁺ , 29 ⁺ , 30 ⁺ OR [28] ⁺ , [29] ⁺ , [30] ⁺ OR ${}^{28}N_2^{+}$, ${}^{29}N_2^{+}$, ${}^{30}N_2^{+}$ all 3 correct (1)	If more than 3 values are given, deduct 1 mark for each additional incorrect value Eg 14, 15, 28, 29, 30 scores (0) 14, 28,29,30 scores (1)	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (c)	N with 14 and 7 in correct places (1) 2 and + (1) IGNORE brackets	$({}^{14}_{7}N{}^{14}_{7}N)^+$		2

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
2 (a)(i)	3 bond pairs and 1 lone pair			1
	(1)			
	both needed for the mark			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (a)(ii)	Shape: (trigonal) pyramidal CONDITIONAL on 3bp and 1lp in (i) (1)		any other type of pyramidal	2
	Angle: 100-107° (1) any number or range within this range	If shape is trigonal planar, allow 120° (1)	just 'less than 107°'	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (a)(iii)	1 st mark pairs of electrons as far apart as possible to minimise repulsion OR electron pairs repel to give maximum separation OR electron pairs adopt a position of minimum repulsion (1) IGNORE any specific number of pairs of electrons mentioned 2 nd mark lone pair-bond pair repulsion greater (than bond pair-bond pair which reduces the bond angle) (1)	bond / lone pairs for electron pairs lone pairs repel more than bond pairs (1) OR lone pair has greater repulsion (1) if candidate states there are no lone pairs allow 1 mark for 'angle is 120°/as expected for trigonal planar'	atoms / bonds instead of pairs of electrons	2

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		2
Z (D)			Any answer just based	2
			on:	
			electronegativity	
			difference, ions, dative	
			covalent bonding (U)	
			N or P molecule loses 1 mark	
	1 st mark			
	too much energy is needed to		N atom too	
	promote a 2s electron on N to		small/smaller than P	
	3 rd energy level			
	OR			
	N has no 2d orbitals			
	OR			
	N has no vacant orbitals in 2 nd			
	energy level/2 nd energy level			
	can note max 8 electrons			
	UK			
	N Calliot recoup the energy			
	inte port operav		port orbital	
	lovel (shell (orbit (1)		next of bitat	
	2 nd mark			
	a 3s electron on P can be			
	promoted into an empty 3d			
	orbital (so can form 5 covalent			
	bonds)			
	OR			
	P has vacant orbitals in 3 rd			
	energy level			
	OR			
	P can expand outer shell to	P can expand it's		
	accept extra electrons / 3 rd	octet'		
	energy level can hold 18			
	electrons			
	OR			
	P can recoup the energy			
	needed for electron promotion			
	(by forming 2 extra covalent			
	bonds)			
	OR			
	P is large enough to			
	accommodate 5 Cl (atoms) (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)(i)			any reference to dipole- dipole, hydrogen bonds, ionic bonds or breaking covalent bonds loses both marks (0)	2
	1 st mark nitrogen has weaker dispersion / van der Waals' / London forces / induced dipole / instantaneous dipole (1)	reverse argument for phosphorus allow stronger/greater van der Waals' etc	less/fewer/more van der Waals' etc OR van der Waals' bonds OR breaking bonds OR just 'weaker intermolecular forces' loses 1 st mark	
	2 nd mark due to fewer electrons (in the molecule) (1) conditional on 1 st mark or 'near miss from reject column for 1 st mark'	smaller electron cloud	smaller / lighter / lower mass molecule	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)(ii)	1 st mark ammonia has hydrogen bonding (and dispersion forces etc) (1)			3
	2 nd mark phosphine has dispersion / van der Waals' / induced dipole-dipole / London forces (1) IGNORE permanent dipole- dipole			
	3 rd mark hydrogen bonding is stronger so more energy /heat is needed (to overcome hydrogen bonding than dispersion / van der Waals' forces) (1)	allow 3 rd mark even if phosphine has permanent dipole- dipole forces in 2 nd mark	covalent bonds broken loses 3rd mark only	

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
3 (a)(i)	$\begin{array}{l} KCl + H_2SO_4 \ \rightarrow \ KHSO_4 \ + \ HCl \\ OR \\ 2KCl + H_2SO_4 \rightarrow K_2SO_4 + 2HCl \\ \textbf{(1)} \\ IGNORE \ any \ state \ symbols \end{array}$	multiples		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (a)(ii)	hydrogen bromide / HBr bromine / Br ₂ sulphur dioxide / SO ₂ all three correct (2) any two correct (1)		Br if more than 3 given, deduct 1 mark for each additional incorrect gas but IGNORE steam / water	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (a)(iii)	redox (reaction) OR reduction and oxidation OR reduction of sulphuric acid / H ₂ SO ₄ OR oxidation of bromide (ion)/Br ⁻ /hydrogen bromide/HBr (1)	acid-base both needed for the mark	just 'reduction' or 'oxidation' on their own displacement disproportionation	1

Question	Correct Answer	Acceptable Answers	Reject	Mark
3 (a)(iv)	FIRST ALTERNATIVE 1 st mark	reverse argument for chloride THIRD ALTERNATIVE	Cl ⁻ ions are stronger oxidising agents than Br ⁻ negates first mark	2
	hydrogen bromide/ HBr is a better reducing agent (than HCl) OR more readily oxidised (1) 2nd mark HBr bond weaker (than HCl	1 st mark HBr/Br ⁻ larger (than HCl/Cl ⁻) (1) 2 nd mark donates/loses outer electron more easily (1)		
	bond) OR Br larger than Cl / outer shell is further from nucleus OR donates/loses outer electron more easily (1)		Just 'bromides are larger than chlorides'	
	SECOND ALTERNATIVE 1 st mark bromide ions / Br ⁻ are better reducing agents OR more readily oxidised (than Cl ⁻)			
	2 nd mark Br ⁻ larger/outer shell is further from nucleus(than Cl ⁻) OR donate/lose outer electrons more easily (than chloride ions) (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)(i)	B (1)			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)(ii)	C (1)			1

Question	Correct Answer	Acceptable Answers	Reject	Mark
number				
4 (a)	(1s ²)2s ² 2p ⁶ 3s ² 3p ⁶ 4s ²	1s ² repeated		1
		subscripts		
		capitals		
		$p_{x}^{2}p_{y}^{2}p_{z}^{2}$ for p^{6}		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)(i)	Type metallic (1) Explanation attraction/attractive force (1)		'force/bonding between' if used instead of 'attraction'	3
	between Ca ²⁺ and (surrounding) sea of electrons / delocalised electrons (1) Stand alone marks	cations / positive ions / calcium ions	atoms / nuclei /ions protons	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)(ii)	electrons are mobile / free		'free' on its own	1
	to move /can flow (under an		OR	
	applied potential) (1)		carry the charge	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (c)(i)	Any two from: calcium 'bobs up and down' / sinks (1) effervescence / fizzing / bubbles (1) solution goes cloudy/milky OR (white) solid / ppt / suspension (1)		floats melts ignites pops moves on water just 'gas evolved'	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (c)(ii)	amount (mol) Ca = $\frac{2.5}{40}$ = 0.0625 (1) vol H ₂ = 24 x 0.0625 = 1.5 dm ³ (1) conseq on their mol OR 40 g Ca produces 24 dm ³ H ₂ (1) so 2.5 g Ca produces $\frac{24x2.5}{40}$ = 1.5 dm ³ H ₂ (1) unit is essential	1500 cm³	incorrect units eg dm ⁻³ , mol dm ⁻³ , dm ³ mol ⁻¹ incorrect units eg dm ⁻³ , mol dm ⁻³ , dm ³ mol ⁻¹	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (d)(i)	$Ca^*(g) \rightarrow Ca^{2*}(g) + e^{(-)}$ equation (1) state symbols (1) conditional on correct calcium species OR $Ca^*(g) - e^{(-)} \rightarrow Ca^{2*}(g)$ equation (1) state symbols (1) conditional on correct calcium species	$\begin{array}{l} Ca^*(g) + e^{(-)} \rightarrow \\ Ca^{2*}(g) + 2e^{(-)} \\ equation (1) \\ state symbols (1) \\ conditional on \\ correct calcium \\ species \\ OR \\ a completely correct \\ general equations \\ including state \\ symbols \\ eg \ M^*(g) \rightarrow \ M^{2*}(g) \ + \\ e^{(-)} (1) \end{array}$		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
Question Number 4 (d)(ii)	Correct Answer I.E decreases (down the group) (1) - stand alone EITHER outer electron further from the nucleus / electron in higher energy level / ionic radius increases (1) and electron better shielded / more (inner) shells of electrons (1) (more than) offsets larger nuclear charge / more protons (1) OR Increased shielding (and more protons) (1)	Acceptable Answers atomic radius increases	Reject	Mark 4
	results in similar effective nuclear charge (1) acting at a greater distance from outer electrons (1)			

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
5 (a)(i)	$4LiNO_3 \rightarrow 2Li_2O + 4NO_2 + O_2$	multiples or halves		3
	all species correct (1)			
	balancing (1) conditional on			
	all correct species			
	$2NaNO_3 \rightarrow 2NaNO_2 + O_2$			
	correct species and balancing			
	(1)			
	IGNORE any state symbols			

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number	4 st 1			
5 (a)(11)	1 st mark			4
	Irend:			
	(thermal stability) increases/			
	nitrates decomposes less			
	readily (down the group)			
	(thermal stability)			
	decreases/nitrates			
	decompose more readily up			
	the group (1)			
	If this mark is not awarded,			
	Z difu S marks can still			
	Explanation:			
	Can be answered in terms of			
	specific ions or down or up			
	the group			
	2 nd mark			
	sodium ion and lithium ion			
	have same charge	Na⁺ is larger than Li⁺	iust 'lithium ion has a	
	OR group 1 ions have the	scores 2 nd and 3 rd	higher charge density'	
	same charge (1)	marks	for the 2 nd mark	
	3 rd mark			
	sodium ion is larger than			
	lithium ion	sodium is larger if	elements get larger	
	OR	ion is stated for 2 nd		
	lithium ion is smaller than	mark		
	sodium ion			
	OR group 1 ions increase in			
	size down the			
	group/decrease in size up			
	the group (1)			
	4" mark		2	
	sodium / larger ion causes		just 'NO ₃ ² '	
	less polarisation / distortion			
	of nitrate (ion) / NO_3 / anion		any other incorrect	
	/ negative ion		formula for nitrate	
	iitnium / smaller ion causes			
	distortion of nitrate (ion) (
	NO ⁻ (prior (possible is a			
	100_3 / amon / negative 100			
	(1)			

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
5 (b)(i)		allow 2 or more s.f.		3
		in (i) and (ii) but		
		only penalise 1 s.f.		
		once		
	amount (mol) Na ₂ O ₂ = <u>1.0</u>			
	78			
	= 0.0128 (1)			
	amount (mol) Na needed =			
	0.0128 x 2 = 0.0256 (1)			
	mass Na needed = 0.0256 x			
	23 = 0.59 g (1)			
	penalise incorrect unit			
	mark consequentially			
	OR			
	78 g (1) of Na_2O_2 produced			
	from 46 g Na (1)			
	1.0g Na ₂ O ₂ produced from 46			
	78			
	= 0.59 g (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (b)(ii)	amount (mol) NaOH = 2 x 0.0128 = 0.0256 / 0.026 (1) conseq on (i)	78 g of Na ₂ O ₂ gives 2 mol NaOH so 1 g gives 2/78 = 0.026 mol (1)	0.0256/0.026 g	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (b)(iii)	conc NaOH = <u>0.0256 x 1000</u> 50.0 (1) conseq on (ii) their answer, based on a calculation involving moles and volume, to 2 sf from 0.0256: 0.51 OR from 0.026: 0.52 (mol dm ⁻³) (1)			2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6 (a)	KIO ₄ (+)7 OR VII (1)	7+		2
	I ₂ O ₅ (+)5 OR V (1)	5+		

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
6 (b)(i)	$2l^- \rightarrow l_2 + 2e^{(-)}$	multiples or half	21	1
	OR			
	$2l^{-} - 2e^{(-)} \rightarrow l_2$ (1)			
	IGNORE any state symbols			

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
6 (b)(ii)	$2IO_3^-$ + 12H ⁺ + 10e ⁽⁻⁾ \rightarrow I ₂	multiples or half		2
	+ 6H ₂ O			
	correct LHS (1)	if only error 10e ⁽⁻⁾		
	correct RHS (1)	on wrong side (1)		
	IGNORE any state symbols			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6 (b)(iii)	$IO_3^- + 5I^- + 6H^+ \rightarrow 3I_2^- + 3H_2O$ OR $2IO_3^- + 10I^- + 12H^+ \rightarrow 6I_2^- + 6H_2O^-$ (1) stand alone conditional on (i) correct and consequential on(ii) PROVIDED there are electrons on correct sides in both half-equations and correct species IGNORE any state symbols	multiples or half		1

6242/01

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
1 (a)(i)	$\triangle H$ reaction= $\Sigma \triangle H_{\rm f}$ products- $\Sigma \triangle$	$\triangle H$ reaction=		2
	$H_{\rm f}$ reactants	products-reactants		
	Or			
	$= [4 \times 90.4 + 6 \times -242] - [4 \times 10^{-1}]$	kJ		
	-46.2] (1)			
	= -905.6/-906 (kJmol ⁻¹) (1)			
	correct answer without			
	working scores (2)			
	incorrect answer without			
	working scores (0)			
	upits scores (1)			
	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)			
	(+) = (+)			
	Any answer omitting just one	lordof		
	stoichiometric factor scores	3 OF 4 S.I.		
	(1) -1176 8 (+)304 4 -1044 2			
	Any answer omitting more			
	than one stoichiometric			
	factor scores (0) e q -105			
	kJmol ⁻¹			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (a)(ii)	H ₂ O is not most stable/ standard state (under standard conditions) Or combustion is not complete Or Involves 4/ more than 1 mol NH ₃ (1)	Water should be in liquid state	Just "Not standard conditions"	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (a)(iii)	(Reaction is exothermic &) heat/ energy produced can maintain catalyst temperature (1)		Just "Reaction is exothermic"	1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
1 (b)(i)	Platinum /Pt (-rhodium /Rh alloy) (1)		Mention of Rb (0)	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)(ii)	Catalyst does not affect position of equilibrium (1) Ignore references to rate of forward and reverse reactions increasing equally	No effect / none		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (c)(i)	Peak to the right and lower (1) higher temperature asymptote approaches <i>x</i> axis above that of the lower temperature (asymptote) (1)		 High temperature curve turns up at end flattening off significally above low temperature curve cuts low temperature curve again 	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (c)(ii)	First mark (Average) molecular (kinetic) energy/ speed increases (1)	Particles for molecules	Atoms/reactants	3
	Number of/ proportion of/ more molecules/collisions with E>Ea increases OR reference to graph (1)	Particles for molecules	Just "more with enough energy to react" Atoms/reactants (penalise once only)	
	Third mark proportion of collisions with sufficient energy for reaction increases (1)	More of the collisions are effective(1) Or	Just 'more successful collisions'	
	Award third mark only if second mark awarded unless penalising "atoms"	collisions per second		

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number			Rejeat	Wark
	Einst we sult			2
I (C)(III)	FIrst mark			2
	Equilibrium moves to the left	More reactants or		
	(1)	less products formed		
		(at equilibrium)		
			Just "endothermic side"	
	Second mark	Because reverse	Just "reverse reaction is	
	Because reaction is	reaction is	favoured"	
	exothermic (1)	endothermic		
	No CQ on incorrect	Allow "endothermic		
	calculation in (a) (i)	reaction is		
		favoured"		
	Second mark is conditional on first mark			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (c)(iv)	First mark Equilibrium moves to the left (1) Second mark Because 9 mol (of gas) on LHS and 10 mol on RHS (1) Second mark is conditional on first mark	More reactants or less products formed (at equilibrium) More moles (of gas) on RHS / less on LHS		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (d)(i)	The enthalpy change when 1 mole of water is produced (1)	"Heat / heat energy / energy" instead of "enthalpy" "released" instead of "change"	'Required' instead of "change"	2
	by the reaction between an acid/ sulphuric acid /H ⁺ and an alkali/ammonia /OH ⁻ (1) (Ignore references to standard conditions /concentrations)	Allow base for alkali provided that "solution/ stated concentration" in answer		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (d)(ii)	$2NH_3 + H_2SO_4 \rightarrow (NH_4)_2SO_4$ or $NH_3 + H_2SO_4 \rightarrow NH_4HSO_4$ Correct formulae of NH_3 , H_2SO_4 and ammonium salt(1) balanced equation(1)	Equations involving NH ₄ OH Equations including ionic salt $H^+ + NH_3 \rightarrow NH_4^+$ scores (2)		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (a)(i)	Sodium chloride / NaCl (1)		salt	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (a)(ii)	 1.Chlorine or Cl₂ (1) 2. Hydrogen or H₂ (1) 3. Sodium hydroxide (solution) or NaOH (1) 	Cl ₂ and H ₂ reversed scores 1 out of the 2	CI H	3

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
2 (a)(iii)	2NaCI +2H ₂ O→2NaOH+Cl ₂ +	2CI ⁻ + 2H ₂ O 2OH ⁻ + CI ₂ + H ₂	$2H^+ + 2CI^- H_2 + CI_2$	2
	H ₂	Allow 2 Na ⁺ as spectator		
	Species (1)	ions		
	balance (1) (no CQ on	multiples		
	incorrect species)			

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
2 (a)(iv)	Recycled (and more NaCl is added to restore concentration) (1)	Re-used		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(i)	$2CI^{-} \rightarrow CI_2 + 2e^{-}(1)$	$2CI^{-} - 2e^{-} \rightarrow CI_{2}$ $CI^{-} \rightarrow CI + e^{-} \text{ and}$ $2CI \rightarrow CI_{2}$ $e \text{ for } e^{-}$	$CI^- \rightarrow CI + e^- alone$ $2H^+ + 2e^- H_2$	1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
2 (b)(ii)	Oxidation because electrons are lost (award mark only if Cl ⁻ on left in b(i)) OR oxidation number of chlorine increases / goes from 1 to zero (1) (must be		Oxidation alone	1
	consistent with oxidation shown in b(i))			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)(i)	Sodium (ions) / Na ⁺ (1)	Hydrogen (ions) /H ⁺ OR cations	Na H / H ₂	1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
2 (c)(ii)	Sodium chlorate(I) / NaOCI / NaClO (1)	Sodium hypochlorite	Sodium chlorate/NaClO ₃	1
			Sodium chloride / NaCl	
			OCI	

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
2 (d)	Any 2 of Water treatment Or Disinfecting/sterilising swimming pools (as a) bleach/ bleaching paper/ bleaching wood pulp in the manufacture of bleach disinfectants		Just "as a disinfectant" Water purification Just "paper manufacture	2
	HCI poly(chloroethene) solvents herbicides pesticides trichloromethane tetrachloromethane high purity silicon dichloromethane CFC's	PVC chloroform carbon tetrachloride methylene chloride Freons/ Halons		
	extraction of bromine / Br ₂		Removes bromine Br	

Question Number	Correct	Answer			Acceptable Answers	Reject	Mark
3 (a)(i)	_						2
		С	Н		% calculation:		
	%	82.8	17.2		formula mass of		
	Moles	82.8÷12	17.2÷1		$C_2H_5 = 29$		
		= 6.9	= 17.2	(1)	% C = 100 x 24÷29		
	Ratio	6.9/6.9	17.2/6.		= 82.8		
		:	9				
		1:	2.49	(1)			
		2:	5				
	Either o	division thr	ough by 6.9) or			
	the rat	io of 1:2.49	9/1:2.5 mus	st be			
	shown	to score se	cond mark				

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
3 (a)(ii)	(formula mass of) $C_2H_5 = 29$			2
	(= 58 ÷ 2) (1)			
	C ₄ H ₁₀ (1) standalone			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (a)(iii)	Alkanes		Alkene(s)	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (a)(iv)	H H H H H C C C C C - C - H H H H H H	CH ₃ CH ₂ CH ₂ CH ₃ and (CH ₃) ₃ CH score (1)		2
	H H H H $H C C C H$ $H H H$ $H H$ $H H$ $H H$ $H H$ $H H$ H H H H H H H H H	two correct skeletal formulae score (1)		
	penalise CH ₃ on structural formulae once only penalise "sticks" once only ignore any names			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)(i)	(Free) radical (1) substitution (1)			2

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
3 (b)(ii)	Ultraviolet / UV (light) (1)	Sunlight or daylight	Just "Light" or	1
		or white light	Just "heat"	

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
3 (c)(i)	Nucleophilic substitution (1)			1
	both words needed			

Question	Correct Answer	Acceptable Answers	Reject	Mark
namnn				
3 (c)(ii)	H $H-C-H$ H H H H H H H H H	"-OH" for "-O-H"	CH3 on structural formulae (CH3)3COH	2
	Tertiary (1) standalone	3° / 3 ^y		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (d)(i)	Ethanolic /alcoholic (solution) (1)	Alcohol /ethanol solvent or in alcohol /ethanol Anhydrous ethanol	Just "(in presence of)ethanol" / "alcohol"	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (d)(ii)	(Nucleophilic) Elimination (1)	Dehydrohalogenation	Dehydration Incorrect reagent descriptions e.g. electrophilic (elimination)	1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
4 (a)(i) Penalise use of "FI" once only in (i) and (ii)				1
	$ \begin{array}{c} F & F \\ C & \\ C & \\ F & F \end{array} $			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(ii)	F F F F F F - C - C - C - C - C - C - C	Allow CQ on a tri- fluoroethene monomer only	Any polymer with a double bond between carbons scores 0 Just -C-C-C-C does not score continuation bonds mark	2

Question	Correct Answer		Acceptable	Reject	Mark
Number			Answers		
4 (a)(iii)	Score 1 for correct use or property;				2
	second mark for property linked to				
	given use				
	Use (1)	Property (1)			
	(non-stick)	Low (coefficient			
	Coating for	of) friction or		Just saucepans	
	saucepans /	slippery		& frying pans	
	frying pans/				
	garden tools				
	Valves /	Low (coefficient			
	Bearings/gears/	of) friction or			
	bushes/	resistant to			
	(burette) taps	chemical attack			
	printed circuit	Electrical			
	boards	Insulator			
	Plumber's tape	Flows under			
		compression or		Waterproof	
		water repellent			
	Waterproof/	Water repellent			
	Gore-tex linings			Waterproof	
	for boots /				
	jackets/ socks				

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)(i)	$\begin{array}{c} H & F \\ C & C \\ F & H \\ C & C \\ H & H \\ H$			2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)(ii)	Restricted rotation about C C/ π bond It cannot rotate	Barrier to free rotation about C C/ π it No rotation about C C/ π it		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)(iii)	1,1-difluoroethene has two identical groups/ atoms attached to the same carbon (while 1,2 difluorethene does not)	1,2-difluoroethene has two different groups/ atoms attached to each C atom (while 1,1- difluoroethene does not)(1)		1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
4 (c)(i)	$CH_2CF_2 + H_2 \rightarrow CH_3CHF_2$ (1)		$C_2H_2F_2 + H_2 \rightarrow C_2H_4F_2$	1
	OR Full structural formulae			
	Do NOT penalise use of FI for			
	fluorine			

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
4 (c)(ii)	(Very similar because)	Same bonds broken		3
	all (three) reactions involve	and formed (1) out		
	breaking a C C $/\pi$ bond and	of the first two		
	an H H (1)			
	and forming 2 C H (1)	Both involve		
		breaking C=C/ π		
	bond enthalpies are similar	bond and forming C-		
	(in the different compounds)	H scores (1)	Energies of bonds same	
	(1) standalone	Out of the first two		

6243/01A

Question Number	Correct Answer		Acceptable Answers	Reject	Mark
1 (a)	Observation Inference K ⁺ (1)	Lilac (1) Potassium /	Mauve / purple	K alone	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)(i)	Observations Yellow precipitate (1) Insoluble (in NH ₃) (1) Inference Iodide / I ⁻ (1)		Iodine / I / iodine ion alone	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)(ii)	Observations Brown (solution)(1) Blue / Black / Blue-Black(1)	Orange / yellow		3
	Inference lodine / l ₂ (1)		1	

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
1 (b)(iii)	$Cl_2 + 2l^2 = 2Cl^2 + l_2$ (1)			1
	[Ignore state symbols]			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (c)	Black solid / purple vapour/ yellow solid / steamy fumes	Fizzing / effervesence	Identity of products eg iodine	1
	/ misty / cloudy fumes		Bad egg smell White smoke	

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
2 (a)	Check subtractions and averaging arithmetic			12
	correcting if necessary.			
	All volumes recorded to 0.05 cm^3 (1)			
	Allow one slip but withhold this mark if any readings			
	are in the wrong boxes.			
	Allow 0, 0.0, 0.00 as initial volume.			
	NOT 50 as initial volume.			
	All subtractions completed correctly (1)			
	[🛩 🛩 top RHS of Table 1]			
	Mean titre			
	For correct averaging of chosen titres, correctly			
	subtracted or for choosing identical titres and for			
	recording the mean correct to 2 or 3 dp or to 0.05 cm ²			
	[unless already penalised in Table 1] (1)			
	[* by the mean in space of hear the dotted the in			
	Accuracy			
	If the candidate has made an arithmetical error in			
	Table 1 or in averaging then the examiner must			
	calculate a new average.			
	• For an averaging error simply calculate a new			
	value using the candidate's chosen values			
	 If a wrongly subtracted titre has been used in the 			
	mean then choose any two identical titres or take			
	an average of the closest two.			
	Calculate the difference between the candidate's			
	calculate the difference between the calculate's			
	Examiner of value = 25.40 cm^3			
	Record the difference as			
	$d = \dots$ on the script			
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	Award marks for accuracy as follows			
	Award marks for accuracy as follows			
	Range			
	The range (r) is the difference between the outermost			
	titres used to calculate the mean. If the examiner has			
	corrected titres because of incorrect subtraction then			
	award the range on the corrected titres used by the			
	examiner to calculate the mean.			
	· · · · · · · · · · · · · · · · · · ·			
	r = 0.20 0.30 0.50 >0.50			
	Mark 3 2 1 0			
	_			
	Examiner to show the marks awarded for accuracy and			
	range as			
	u = value $r = Value$			
	• O MAX • 3 MAX			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(i)	4.50= 0.0500 (mol dm ⁻³)90.0If units given must be mol dm ⁻³ .Penalise once only			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(ii)	$\frac{25.0}{1000} \times 0.050$ = 1.25 x 10 ⁻³ / 0.00125 (mol) If units given must be moles.	Cq on (i)	0.0013	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(iii)	$1.25 \times 10^{-3} \times 2 = 2.50 \times 10^{-3}$ (mol)	Cq on (ii)		1
	If units given must be moles.			

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
2 (b)(iv)	2.50 x 10 ⁻³ x <u>1000</u> Mean titre = concentration (mol dm ⁻³) Answer to 3SF. If units given must be mol dm ⁻³ .	Cq on (ii)		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)(i)	It will halve it OR candidates mean titre divided by 2			1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
2 (c)(ii)	Less accurate because greater percentage/relative error			1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
3 (a)	Table 2			2
	Full set of temperature			
	readings (1)			
	Readings to whole degree (1)			
	(Penalise once only)			
	[✔ ✔ Bottom RHS of Table 2]			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)	Graph Temperature(y) scale - 2 cm at least 10° and allows for extrapolation if necessary (1) All points correctly plotted (1)			2

Question Number	Correct	Answei	-		Acceptable Answers	Reject	Mark
3 (c)(i)	Correct minutes ∆T corre- working Accurat Compar (correct examine Show di d = Award a follows d = Mark	extrap ectly fo (1) ectly fo (1) er candi ted if no er's ΔT. er's ΔT fferenc accurac ±2°C 3	date's 4 ecessary = 25°C e on sci y marks ±3°C 2	to 3 fom AT y) with ript as as ±5°C 1	If no graph, $\Delta T = T_{MAX} - T_{MIN}$ for accuracy		5

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (c)(ii)	$\frac{50 \times 0.50}{1000} = 0.025$	Answer only		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (c)(iii)	50 x 4.18 x ΔT J OR <u>50 x 4.18 x ΔT</u> kJ 1000 [Cq on ΔT. Ignore sign]	Answer only with units		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (c)(iv)	Answer to (c)(iii) (1) Answer to (c)(ii) Answer to 2 SF only and kJ mol ⁻¹ (1) Negative sign ONLY-award independently.(1)	Answer cq on (c)(ii) and (iii)	Answers that do not follow <u>heat</u> method. moles	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (d)	$CuSO_4$ -higher concentration .		More/increase volume CuSO ₄ More zinc.	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4	 Add Zn to CuSO₄ (and stir) until blue colour disappears / reaction ends Add H₂SO₄ to mixture. Until no more bubbles / reaction ends Filter off Cu. Wsh Cu and dry (until constant mass) Weigh Cu Moles Cu = mass Cu 63.5 Concⁿ CuSO₄ = moles Cu(SO₄) × 1000 50 Stand alone OR 			7
	 1 ✓ Weigh Zn 2 ✓ Add Zn to CuSO₄ and stir until blue colour disappears. 3 ✓ Add H₂SO₄ to mixture. 4 ✓ When no more bubbles / reaction ends measure volume H₂. 5 ✓ Volume H₂ = moles H₂ 24, 000 6 ✓ Moles H₂ = moles Zn in excess and mass Zn at start = moles Zn at start 65.4 moles Zn that displace Cu = moles Zn at start - moles Zn in excess 7 ✓ Moles Zn that displace Cu = moles CuSO₄ Concⁿ CuSO₄ = moles CuSO₄ x 1000 50 			

Group 1 (6243/01A): This practical test must be taken on the day specified on the official timetable, and is available to Home Centres, International Teaching Institutions and International Centres.

Apparatus and Materials

Apparatus:

Each candidate will require:

- 1. two test tubes and one boiling tube in a test tube rack;
- 2. apparatus and materials for carrying out a flame test;
- 3. one 10 cm^3 measuring cylinder;
- 4. a supply of dropping pipettes;
- 5. spatula;
- 6. 50.0 cm^3 burette, in stand and clamp, with small funnel for filling;
- 7. small beaker for draining burette;
- 8. 25.0 cm^3 pipette and safety filler;
- 9. white tile;
- 10. two 250 cm^3 conical flasks;
- 11. expanded polystyrene cup held securely in a 250 cm³ beaker;
- 12. one 50 cm^3 or 100 cm^3 measuring cylinder;
- 13. timer;
- 14. a thermometer, range 0–100 °C (or similar), graduated in 1.0 °C intervals or a thermometer that can be read to an accuracy of at least 1.0 °C.

Materials

Each candidate will require:

- (a)* 1.0 g of potassium iodide in a stoppered tube labelled **A**. The identity of this compound is **not** to be disclosed to candidates;
- (b)* 200 cm³ of aqueous sodium hydroxide of concentration 0.0975 mol dm⁻³ labelled **Solution B**. The concentration of this solution is **not** to be disclosed to candidates.
- (c)* 200 cm³ of aqueous ethanedioic acid of concentration 0.0500 mol dm⁻³ labelled Solution C [this may be prepared by dissolving 6.30 g of solid ethanedioic acid dihydrate, (COOH)₂.2H₂O per dm³
 - of solution. Candidates will be given the mass of the **anhydrous** acid per dm³ of solution.];
- (d)* 70 cm³ of aqueous copper(II) sulphate of concentration 0.50 mol dm⁻³ labelled D; there D;
- (e)* between 2.4 g and 2.5 g of powdered zinc in a stoppered container labelled zinc;
- (f) 2 cm^3 of dilute nitric acid; concentration approximately 2.0 mol dm⁻³;
- (g) 2 cm^3 of dilute hydrochloric acid; concentration approximately 2.0 mol dm⁻³;
- (h) 2 cm^3 of aqueous silver nitrate; concentration approximately 0.05 mol dm⁻³;
- (i) access to a bottle of concentrated aqueous ammonia;
- (j) 2 cm³ of aqueous sodium chlorate(I) (approximately 5% available chlorine) labelled **aqueous** chlorine;

12

- (k) 2 cm^3 of freshly prepared aqueous starch;
- (1) phenolphthalein indicator;
- (m) a supply of distilled water.

For home centres (ONLY), the materials identified with an asterisk (*) will be sent by a firm of manufacturing chemists.

126

32

6243/01B

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (a)	Observation Yellow / Orange (1) Inference Sodium / Na ⁺ (1)	Golden	Orange-red Na alone	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)(i)	ObservationsYellow precipitate (1)Insoluble (in NH3) (1)InferenceIodide / I ⁻ (1)		lodine / I / iodine ion alone	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)(ii)	Observations Brown (solution) (1) Blue / Black / Blue-Black (1)	Orange / yellow		3
	Inference Iodine / I ₂ (1)		1	

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
1 (b)(iii)	Cl_2 + $2l^- \rightarrow 2Cl^-$ + l_2			1
	[Ignore state symbols]			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (c)	Black solid /purple vapour / yellow solid / steamy fumes/ misty / cloudy fumes	Fizzing / effervesence	Identity of products eg iodine Bad egg smell White smoke	1

Question	Correct Answer A							Acceptable	Reject	Mark
Number								Answers		
2 (a)	Check subt if necessar	tractions a y.	nd averagi	ng arithi	netic	correc	ting			12
	All volumes recorded to 0.05 cm ³ (1) Allow one slip but withhold this mark if any readings are in the wrong boxes. Allow 0, 0.0, 0.00 as initial volume. NOT 50 as initial volume.									
	All subtract	ions comp HS of Tabl	eted corre	ctly (1)					
	Mean titre For correct averaging of chosen titres, correctly subtracted or for choosing identical titres and for recording the mean correct to 2 or 3 dp or to 0.05 cm ³ [unless already penalised in Table 1] (1) [✓ by the mean in space or near the dotted line in paragraph below]									
	 Accuracy If the candidate has made an arithmetical error in Table 1 or in averaging then the examiner must calculate a new average. For an averaging error simply calculate a new value using the candidate's chosen values If a wrongly subtracted titre has been used in the 						able a alue e xe an			
	average of the closest two. Calculate the difference between the candidate's mean titre and that of the examiner or supervisor. Examiners' value = 25.40 cm^3 Record the difference as					ean				
	Award mar	ks for acc	uracy as fo	llows						
	d = ±0	0.20 ±0.3	30 ±0.40	±0.60	±0.8	80 ±'	1.00			
	Mark	6 5	4	3	2		1			
	Range The range(r) is the difference between the outermost titres used to calculate the mean. If the examiner has corrected titres because of incorrect subtraction then award the range on the corrected titres used by the examiner to calculate the mean.									
	r = 0.20 0.30 0.50 >0.50 Mark 3 2 1 0 Examiner to show the marks awarded for accuracy and									
	range as d = value		r = valu	е						
	✓ 6 _{MAX}		✓ 3 _{MA}	- (

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
2 (b)(i)	$\frac{3.90}{40.0}$ = 0.0975 (mol dm ⁻³) If units given must be mol dm ⁻³ Penalise once only			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(ii)	<u>Mean titre</u> x 0.0975 1000 = answer (mol) If units given must be mol	Cq on (i)		1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
2 (b)(iii)	Answer to (ii) = answer (mol)	Cq on (ii)		1
	2			
	If units given must be mol			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(iv)	Answer to (iii) x $\frac{1000}{25.0}$ = concentration (mol dm ⁻³) Answer to 3sf. If units given must be mol dm ⁻³ .	Cq on (iii)		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)(i)	It will halve it OR candidates mean titre divided by 2			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)(ii)	Less accurate because greater percentage/relative error			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (a)	Table 2Full set of temperaturereadings (1)Readings to whole degree (1)(Penalise once only)[✓ ✓ Bottom RHS of Table 2]			2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)	Graph Temperature(y) scale - 2 cm at least 10° and allows for extrapolation if necessary (1) All points correctly plotted (1)			2

Question Number	Correct	Answer	-		Acceptable Answers	Reject	Mark
3 (c)(i)	Correct extrapolation to 3 minutes (1) ΔT correctly follows from working (1)AccuracyCompare candidate's ΔT 				If no graph, $\Delta T = T_{MAX} - T_{MIN}$ for accuracy		5
	wark	3	2	.1			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (c)(ii)	$\frac{50 \times 0.50}{1000} = 0.025$	Answer only		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (c)(iii)	50 x 4.18 x ΔT J OR <u>50 x 4.18 x ΔT</u> kJ 1000 [Cq on ΔT. Ignore sign]	Answer only with units		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (c)(iv)	Answer to (c)(iii) (1) Answer to (c)(ii) Answer to 2 SF only and kJ mol^{-1} (1) Negative sign ONLY-award independently.(1)	Answer cq on (c)(ii) and (iii)	Answers that do not follow <u>heat</u> method. moles	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (d)	No change since more heat but also more volume of solution			1
Question Number	Correct Answer	Acceptable Answers	Reject	Mark
--------------------	--	--------------------	--------	------
4	1 ✓ Add Fe to CuSO ₄ (and stir) until blue colour disappears / reaction ends 2 ✓ Add HCl to mixture 3 ✓ Until no more bubbles / reaction ends 4 ✓ Filter off Cu. Wash Cu and dry (until constant mass) 5 ✓ Weigh Cu 6 ✓ Moles Cu = mass Cu 63.5 7 ✓ Conc ⁿ CuSO ₄ = moles CuSO ₄ x 1000 50 6 √7 ✓ Stand alone OR 1 ✓ Weigh Fe 2 ✓ Add Fe to CuSO ₄ and stir until blue colour disappears 3 ✓ Add HCl to mixture. 4 ✓ When no more bubbles / reaction ends measure volume H ₂ . 5 ✓ Volume H ₂ = moles H ₂ 24,000 6 ✓ Moles H ₂ = moles Fe in excess and mass Fe at start moles Fe that displace Cu = moles Fe at start - moles Fe in excess 7 ✓ Moles Fe that displace Cu = moles CuSO ₄ = moles CuSO ₄ x 1000 50 5 √6 √7 ✓ Stand alone			7
			1	

Group 2 (6243/01B): This practical test must be taken on the day specified on the official timetable, and is available to Home Centres, International Teaching Institutions and International Centres.

Apparatus and Materials

Apparatus

Each candidate will require:

- 1. two test tubes and one boiling tube in a test tube rack;
- 2. apparatus and materials for carrying out a flame test;
- 3. one 10 cm³ measuring cylinder;
- 4. a supply of dropping pipettes;
- 5. spatula;
- 6. 50.0 cm^3 burette, in stand and clamp, with small funnel for filling;
- 7. small beaker for draining burette;
- 8. 25.0 cm^3 pipette and safety filler;
- 9. white tile;
- 10. two 250 cm^3 conical flasks;
- 11. expanded polystyrene cup held securely in a 250 cm³ beaker;
- 12. one 50 cm^3 or 100 cm^3 measuring cylinder;
- 13. timer;
- 14. a thermometer, range 0–100 °C (or similar), graduated in 1.0 °C intervals or a thermometer that can be read to an accuracy of at least 1.0 °C.

Materials

this. Vecipe

Each candidate will require:

- (a)* 1.0 g of sodium iodide in a stoppered tube labelled E. The identity of this compound is **not** to be disclosed to candidates;
- (b)* 200 cm³ of aqueous sodium hydroxide of concentration 0.0975 mol dm⁻³ labelled Solution F;
- (c) $\stackrel{*}{\leftarrow}$ 200 cm³ of aqueous ethanedioic acid of concentration 0.0500 mol dm⁻³ labelled **Solution G** [this may be prepared by dissolving 6.30 g of solid ethanedioic acid dihydrate, (COOH)₂.2H₂O per dm³ of solution.]. The concentration of this solution is **not** to be disclosed to candidates.
- (d)* 70 cm³ of aqueous copper(II) sulphate of concentration 0.50 mol dm⁻³ labelled H;
- (e)* between 2.4 g and 2.5 g of powdered zinc in a stoppered container labelled zinc;
- (f) 2 cm^3 of dilute nitric acid; concentration approximately 2.0 mol dm⁻³;
- (g) 2 cm^3 of dilute hydrochloric acid; concentration approximately 2.0 mol dm⁻³;
- (h) 2 cm^3 of aqueous silver nitrate; concentration approximately 0.05 mol dm⁻³;
- (i) access to a bottle of concentrated aqueous ammonia;
- (j) 2 cm³ of aqueous sodium chlorate(I) (approximately 5% available chlorine) labelled **aqueous** chlorine;
- (k) 2 cm^3 of freshly prepared aqueous starch;
- (l) phenolphthalein indicator;
- (m) a supply of distilled water.

For home centres (ONLY), the materials identified with an asterisk (*) will be sent by a firm of manufacturing chemists.

6243/01C

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
1 (a)	Observation			2
	Red / pink (1)			
	Inference			
	$H^{+}/H_{3}O^{+}$ (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)	Observation White ppte (1) Inference SO4 ²⁻ / sulphate (1)		Suspension	2

Question Number	Correct Answe	r	Acceptable Answers	Reject	Mark
1 (c)	Observation Inference K ⁺ (1)	Lilac (1) Potassium /	Mauve/purple	к	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (d)	Observation Limewater cloudy / milky / White ppte (1) Inferences Carbon dioxide / CO ₂ (1) Carbonate / CO ₃ ²⁻ (1)	Hydrogen carbonate / HCO3 ⁻		3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (e)	$K_2CO_3 + H_2SO_4$ $\Box K_2SO_4 + CO_2 + H_2O / CO_3^{2-} + 2H^+$ $\Box CO_2 + H_2O$ [IGNORE state symbols]	Equivalent HCO ₃ ⁻ equations.		1

Question	Correct Answer	Acceptable	Reject	Mark
	Charly subtractions and sucrasing arithmetic	Allsweis		12
Z (d)	correcting if pecessary			12
	concerning in necessary.			
	All volumes recorded to 0.05 cm ³ (1)			
	Allow one slip but withhold this mark if any readings			
	are in the wrong boxes.			
	Allow 0, 0.0, 0.00 as initial volume.			
	NOT 50 as initial volume.			
	All subtractions completed correctly (1)			
	All subtractions completed correctly (1)			
	Mean titre			
	For correct averaging of chosen titres, correctly			
	subtracted or for choosing identical titres and for			
	recording the mean correct to 2 dp or to 0.05 cm ³			
	[unless already penalised in Table 1] (1)			
	[✓ by the mean in space or near the dotted line in			
	paragraph below]			
	Accuracy			
	If the candidate has made an arithmetical error in			
	Table 1 or in averaging then the examiner must			
	calculate a new average.			
	For all averaging error simply calculate a new value using the candidate's chosen values			
	 If a wrongly subtracted titre has been used in the 			
	mean then choose any two identical titres or take			
	an average of the closest two.			
	•			
	Record the supervisor's value on the script as s=			
	Calculate the difference between the candidate's			
	mean titre and that of the supervisor.			
	Record the difference as			
	d = on the script			
	Award marks for accuracy as follows			
	$d = \frac{1}{2} + 0.20 + 0.30 + 0.40 + 0.60 + 0.80 + 1.00$			
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	Range			
	The range(r) is the difference between the outermost			
	titres used to calculate the mean. If the examiner has			
	corrected titres because of incorrect subtraction then award the range on the corrected titres used by the			
	examiner to calculate the mean.			
	r = 0.20 0.30 0.50 >0.50			
	Mark 3 2 1 0			
	Examiner to show the marks awarded for accuracy and			
	range as			
	a = value $r = value$			
	• O MAX • 3 MAX			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(i)	<u>Mean titre</u> x 0.10 1000 = answer (mol) Answer to at least 3 SF. If units given must be mol Penalise once only			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(ii)	Answer to (i) = answer (mol) 2	Cq on (i)		1
	Answer to at least 3 SF. If units given must be mol			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(iii)	Answer to (ii) x <u>1000</u> 25.0 = concentration (mol dm ⁻³) Answer to at least 3 SF. If units given must be mol dm ⁻³ .	Cq on (ii)		1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
2 (b)(iv)	<u>4.29</u> = molar mass	Cq on (iii)		1
	Answer to (iii)			
	Units: g or g mol ⁻¹			
	Answer to at least 2SF			

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
2 (c)(i)	It will halve it			1
	OR candidates mean titre			
	divided by 2			

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
2 (c)(ii)	Less accurate because			1
	greater percentage/relative			
	error			

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
3 (a)	Table 2			2
	Full set of temperature			
	readings (1)	Temps to 1 dp		
	Readings to whole degree			
	(1)			
	[✓ ✓ Bottom RHS of Table 2]			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)	Graph Temperature(y) scale - 2 cm at least 10° and allows for extrapolation if necessary (1) [✓ Bottom LHS of grid]			2
	All points correctly plotted (1) [৺ on bottom LHS of grid]			

Question	Corroct	Angwor	-		Accontable Answers	Pojost	Mark
Question	Correct	Answei			Acceptable Answers	Reject	main
Number 3 (c)(i)	$\begin{array}{l} \Delta T \mbox{ working on graph correct} \\ (1) \\ \Delta T \mbox{ correctly follows from} \\ \mbox{ working (1)} \\ \mbox{ Accuracy} \\ \mbox{ Compare candidate's } \Delta T \\ \mbox{ (corrected if necessary) with} \\ \mbox{ supervisor's } \Delta T. \\ \mbox{ [default } \Delta T = 25^{\circ} C \] \\ \mbox{ Show difference on script as} \\ \mbox{ d =} \\ \mbox{ Award accuracy marks as} \\ \mbox{ follows} \end{array}$		If no graph then ∆T= T _{max} - T _{min} for accuracy		5		
	d =	±2 ⁰ C	±3 ⁰ C	±5 ⁰ C			
	Mark	3	2	1			
	$[^2 \checkmark$ on graph + $^3 \checkmark$ in space below ΔT]						

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (c)(ii)	$\frac{50 \times 0.50}{1000} = 0.025$	Answer only		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (c)(iii)	50 x 4.18 x ΔT J OR <u>50 x 4.18 x ΔT</u> kJ <u>1000</u> [Cq on ΔT. To at least two SF: ignore sign]	Answer only with units		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (c)(iv)	Answer to (c)(iii) (1) Answer to (c)(ii) Answer to 2 SF only and kJ mol ⁻¹ (1) Negative sign ONLY-award independently.(1)	Answer cq on (c)(ii) and (iii)	Answers that do not follow <u>heat</u> method. moles	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (d)	Use pipette / burette instead of measuring cylinder to measure CuSO ₄ OR Lid on polystyrene cup/ more lagging	More accurate thermometer. OR Mechanical stirring		1

Question	Correct Answer	Acceptable Answers	Reject	Mark
4	1 ✓ Weigh M (1) 2 ✓ Add M to CuSO4 [and stir] (1) 3 ✓ Filter off Cu (1) 4 ✓ Wash Cu and dry (to constant mass) (1) 5 ✓ Weigh Cu (1) 6 ✓ Moles Cu = mass Cu (1) 63.5 7 ✓ Mr(M)= mass M (1) moles M(Cu) 6 ✓ 7 ✓ stand alone		until blue colour disappears	7

Group 3 (6243/01C): This practical test is only available to **International Teaching Institutions** and **International Centres**. The date of this practical test MUST be agreed in advance through submission of Form ES-F8-MJ2009 found in the International Information Manual.

Apparatus and Materials

Apparatus

Each candidate will require:

- 1. three test tubes in a test tube rack;
- 2. apparatus and materials for carrying out a flame test;
- 3. apparatus for carrying out a limewater test in 1(d) using the technique with which candidates are most familiar;
- 4. 10 cm^3 measuring cylinder;
- 5. a supply of dropping pipettes;
- 6. spatula;
- 7. 50.0 cm^3 burette, in stand and clamp, with small funnel for filling;
- 8. small beaker for draining burette;
- 9. 25.0 cm^3 pipette and safety filler;

10. white tile;

- 11. two 250 cm^3 conical flasks;
- 12. expanded polystyrene cup held securely in a 250 cm³ beaker;
- 13. one 50 cm^3 or 100 cm^3 measuring cylinder;
- 14. timer;
- 15. a thermometer, range 0–100 °C (or similar), graduated in 1.0 °C intervals or a thermometer that can be read to an accuracy of at least 1.0 °C.

Materials

Each candidate will require:

- (a) 10 cm^3 of approximately 1.0 mol dm^{-3} dilute sulphuric acid labelled **P**. The identity of this solution is **not** to be disclosed to candidates;
- (b) 1.0 g of anhydrous potassium carbonate in a stoppered tube labelled **Q**. The identity of this compound is **not** to be disclosed to candidates;
- (c) 200 cm^3 of aqueous sodium hydroxide of concentration 0.100 mol dm⁻³ labelled Solution R;
- (d) 200 cm³ of aqueous ethanedioic acid of concentration 6.00 g dm⁻³ labelled **Solution S**. [This is prepared by dissolving 6.00 g of solid ethanedioic acid dihydrate, (COOH)₂.2H₂O per dm³ of solution.] Candidates will be given the mass of the **anhydrous** acid per dm³ of solution;
- (e) 70 cm^3 of aqueous copper(II) sulphate of concentration 0.50 mol dm⁻³ labelled T;
- (f) between 2.4 g and 2.5 g of powdered zinc in a stoppered container labelled zinc;
- (g) access to a bottle of Universal Indicator solution;
- (h) 2 cm^3 of aqueous barium chloride; concentration approximately 0.2 mol dm⁻³;
- (i) access to a bottle of freshly prepared limewater;
- (j) phenolphthalein indicator;
- (k) a supply of distilled water.

6243/02

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (a)	Na⁺ (1)	sodium	Na / NA⁺	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)	(Gas evolved): ammonia/NH ₃ (1) (Anion in B): nitrate/NO ₃ ⁻ /nitrate(V) (1) Allow nitrite / NO ₂ ⁻ / nitrate(III)		NH ₄ ⁺ Ammonium NO ₃ /NO ₂	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (c)	Sulphate/SO4 ²⁻ /sulphate(VI) Sulfate/ sulfate (VI)		SO ₄	1

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
1 (d)	Test: (dilute) nitric acid/HNO ₃ (1)			4
	(aqueous) silver nitrate (solution)/AgNO3 (1)			
	accept Test reagents added in either order			
	Mark test reagents separately If reagents react with each other this is +- and scores 0. E.g Silver nitrate plus sodium hydroxide scores zero			
	If wrong reagent does not interfere score 1 mark			
	Ignore ammonia and concentrated			
	(Formula of yellow precipitate): Agl (1)		I_2 / iodine / iodine ion	
	(Anion in D): iodide / I ⁻ (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (e)	(Gas evolved): carbon dioxide/CO ₂ (1) (Anion in E): carbonate/CO ₃ ²⁻ (1) or hydrogencarbonate / HCO ₃ ⁻ / bicarbonate (1) anions in either order		CO ₃ HCO ₃	3

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
2 (a)	Note		If answer implies a	3
	The first two marks are for		closed system score MAX	
	how reflux works		2	
	The third mark is for either			
	why heat is needed or why			
	heat under reflux is needed			
	heat under renux is needed			
	(Liquid bails and)			
	gas/vapour/ tumes is			
	condensed/ turns back to			
	liquid (1)			
	Runs back/ falls back/			
	returns to flask (1)			
	Third mark			
	(heating needed because)			
	reaction is slow / reaction			
	has a high activation energy			
	/speed up the reaction			
	on provent products bailing off (Loss of reactants /	To allow reaction to go	
	to prevent products boining on/		to anow reaction to go	
	to prevent loss of (volatile)	products		
	substances (1)		References to bond	
			energy	

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
2 (b)	Any two impurities from:	Propene	Conc sulphuric acid	2
	Propan-2-ol	1.2 Dibromopropane		
	Bromine			
	Hydrogen bromide /	correct formula in		
	hydrobromic acid	each case		
	Sulphur dioxide / sulphurous			
	acid			
	Sulphuric acid (2)			
	Note			
	2- bromopropane is not an			
	impurity			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)(i)	Remove acid / neutralise (Allow correct named acid)		Remove impurities	1
Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)(ii)	Lowest layer is the 2- bromopropane			1
Ouestion	Correct Answer	Acceptable Answers	Reject	Mark

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
2 (c)(iii)	Drying agent/remove water		dehydrate	1
	(1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (d)	Moles of propan-2-ol <u>7.8</u> = 0.13 (mol) (1) 60			3
	theoretical yield = 0.13 x 123 = 16.0 (g) (1)	15.99g/16g	15.9g	
	percentage yield = 10 0 x 100% = 62 5(4) % (1)	63%	60%	
	16.0 correct answer with some working scores (3) correct answer alone scores (2)	62.3%		
	Wrong unit -1 Calculations in moles not grams: 0.0813/0.13 x 100= 62.5 If moles switched allow 1 mark for 128%	80% and 61.5% (are working to 1 sig fig in calculation) Scores 2 marks		
	Ignore significant figures unless reduce to 1 sig. fig.			

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
3 (a)(i)	(150 x 4.18 x 29.0 =) 18200	18183 J/18.183 kJ	18000	1
	J/18.2 kJ (1)		Wrong units	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (a)(ii)	Mass of ethanol burned = 0.92 (g) (1) 0.92 = 0.02 (mol) (1) 46	0.020/0.0200		2

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
3 (a)(iii)	 <u>answer to (i) in kJ</u> answer to (ii) i.e. <u>-18.2</u> = -909/-910 (kJ mol⁻¹) 0.02 value (1) answer with negative sign (and correct units) (1) (standalone) 	–909 (kJ mol ⁻¹)		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (a)(iv)	These are stand alone marks (Identity of black solid): carbon/C (1)	soot/graphite	coke/charcoal	3
	(Effect): (Value is) lower/smaller/less exothermic/ less negative/ decrease (1)			
	(Reason): (as) incomplete combustion /less CO ₂ formed/fewer C=O bonds formed (1)	Allow reference to not enough oxygen Incomplete oxidation	Incomplete reaction	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (a)(v)	C ₂ H ₅ OH(I) + $3O_2(g) \rightarrow 2CO_2(g)$ + $3H_2O(I)$ Correctly balanced equation (1) State symbols (1) The state symbol mark can also be awarded for an equation that has the correct species but is wrongly balanced.		multiples H ₂ O(g)	2

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
3 (a)(vi)	Water is produced as a liquid under standard conditions whereas water is produced as a vapour in (a)(iii) (therefore releasing less energy)/ Water is not in its standard		Note This is the only answer. 'Not standard conditions' will not do. References to heat loss	1
3 (a)(vi)	Water is produced as a liquid under standard conditions whereas water is produced as a vapour in (a)(iii) (therefore releasing less energy)/ Water is not in its standard state (not liquid)		Note This is the only answer. 'Not standard conditions' will not do. References to heat loss	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)(i)	Either ethanal/volatile component/product can escape Or product can be distilled/ Distillation occurs Or ethanal/volatile component/product has a boiling point less than 60°C		Incomplete oxidation Partial oxidation (occurs)	1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
3 (b)(ii)	Ethanal does not escape/ is		Full oxidation (occurs)	1
	not distilled of/is refluxed/			
	falls back into flask (1)			

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
3 (b)(iii)	Orange to green / blue /	Orange to any		1
	brown (1)	combination of the		
	Both colours required	colours given		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(i)	(Moles C) $\frac{2.18}{12}$ and $\frac{12}{12}$ (Moles H) $\frac{0.36}{1}$ and $\frac{1}{1}$ (Moles O) $\frac{1.46}{16}$ = 0.18:0.36:0.09 (1) C ₂ H ₄ O (1)	Any other correct method		2

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
4 (a)(ii)	$C_2H_4O = 44.0$ (1)			2
	88.0 = 2(.00) (1)			
	44.0			

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
4 (b)	(First inference): (carbon)-carbon	Double		2
	double bond/C=C/alkene	bond/unsaturated		
	(1)			
	(Second inference):		Carboxylic acid	
	-OH/ alcohol / hydroxyl / hydroxy		OH ⁻ /hydroxide	
	(group) (1)		Hydroxyl followed by	
			OH ⁻ (0)	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (c)	Any valid pair of cis and least one alcohol function Possible examples $HO_{CH_3} OH_{CH_3} and$ $H_{CH_2OH} CH_2OH_{H} and$ $H_{CH_2OH} H$ There is one mark for each There must be two isomer If the two isomers drawn <i>cis-trans</i> isomerism but a	The trans isomers of $C_4H_8O_2$ that contain at anal group. (2) $OH_{C=C}CH_3$ CH_3OH $H_{C=C}CH_2OH$ $H_{C=C}H_2OH$ CH_2OH CH_2OH CH_2OH CH_2OH CH_2OH CH_2OH CH_3O_2 that show re not a <i>cis-trans</i> pair score 1 mark	If they draw isomers of a compound that is not C ₄ H ₈ O ₂ (0)	2

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number 5	 ✓1 Weigh crucible empty ✓2 Weigh crucible plus magnesium OR weigh magnesium separately 	Allow any sort of container generally used in the lab	If no mention of nitric acid in the answer can score only 1 st two marks	6
	✓3 Add excess (dilute) nitric acid / add nitric acid till all dissolved / reacted			
	 ✓4 Heat (to decompose magnesium nitrate) in a fume cupboard (This mark may be spread across different parts of the question) 			
	✓5 Weigh crucible plus residue/weigh crucible + MgO			
	✓6 Re-heat to constant mass Note: This is only positive evidence for completion of the reaction.			
	Note; If candidate isolates the magnesium nitrate and transfers it to a new vessel for decomposition score. Reason: results will be inaccurate in terms of whole point of experiment. Max 5			

6244/01

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (a)(i)	$Na_2O + H_2O \rightarrow 2Na^+ + 2OH^-$ OR $Na_2O + H_2O \rightarrow 2NaOH$ (1) Ignore state symbols even if wrong.		$O^2 - + H_2O \rightarrow 2OH^-$	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (a)(ii)	$\begin{array}{l} P_4O_{10}(s) + 6H_2O(l) \rightarrow \\ & 4H_3PO_4(aq) \end{array} \\ (1) \mbox{ for equation,} \\ (1) \mbox{ for states consequential} \\ \mbox{ on correct formulae.} \end{array}$	$H_{3}PO_{4}$ shown as ions: $H^{+}(aq) + H_{2}PO_{4}^{-}(aq)$ or $2H^{+}(aq) + HPO_{4}^{2-}(aq)$ or $3H^{+}(aq) + PO_{4}^{3-}(aq)$		2
	Accept for (1) $P_2O_5(s) + 3H_2O(l) \rightarrow 2H_3PO_4(aq)$ if completely correct.			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (a)(iii)	Na ₂ O ionic (1) P ₄ O ₁₀ covalent (1) Third mark: O^{2^-} ions react with water molecules to remove H ⁺ OR O^{2^-} ions polarise water molecules to form OH ⁻ OR $O^{2^-} + H_2O \rightarrow 2OH^-$ (1)	Equivalent answers in diagrams.	Dative or giant covalent Hydrolysis alone Metallic oxide basic	4
	Fourth mark: polar P-O bond attacked by (polar) water molecules OR P ^{δ+} attacked by (polar) water molecules (1)	P is less electronegative than O so is attacked	Non-metallic oxide acidic	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)	Moles $KO_2 = \frac{1.2}{71} = 0.0169$ (1) $Vol O_2 = \frac{24 \times 0.0169}{2}$	0.017, giving 0.204 dm ³	0.02 24 x 1.2	2
	= 0.203 dm ³ (1) consequential on moles of KO ₂ OR 142 g oxide gives 24 dm ³ oxygen (1) so volume of oxygen = (24 x 1.2) ÷ 142 dm ³ = 0.203 dm ³ (1)	Answer as fraction. 203 cm ³		
	Ignore sf, but unit needed and it must agree with the value. Correct answer with no working (2)	Thus 0.2, 0.20, 0.203, 0.204 can all score in dm ³		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2(a)(i)	The energy change when 1 mol of ionic solid/lattice/crystal/compound (1) is formed from ions in the gaseous state (infinitely far apart) OR $M^+(g) + X^-(g) \rightarrow MX(s)$ (1) If 'lonic' is not stated in the first mark answer, the first mark can score if ions are mentioned in the answer for the second mark. Ignore any reference to standard states. Completely correct endothermic definition scores (1)	heat or heat energy or enthalpy; energy (etc) evolved	energy (etc) absorbed Compound, substance, molecule. formed from 1 mole of ions	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (a)(ii)	The heat or energy change for the formation of one mol of gaseous atoms (1) from the element in its standard state (1) Second mark conditional on the first.	Element at 298K and 1atm	one mol of gas; one mol of element	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(i)	polarisation of the anion (by the cation) OR polarisation by the cation (of the anion) OR partial covalent bonding (1) Ignore any reference to any values of lattice energies.	covalent character	Answers referring to molecules Intermediate bonding alone	1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
2 (b)(ii)	MgF ₂ as answer (0)		Answers based on	2
	irrespective of what follows.		electronegativity	
	(MgI ₂ because) the larger	iodine ion	iodine, I_2 anion, I_2	
	iodide ion (1)			
	is more polarisable (than	distorts the electron	polarisation of cation by	
	fluoride leading to greater	cloud	anion	
	covalence) (1)			
	UR (Mgl. because) the smaller			
	$(Mg_1 2 \text{ because})$ the smaller	fluoring ion	fluering Fanion F	
	$fiuoride ion in MgF_2(1)$	rluorine ion	fluonne, F_2 amon, F_2	
	iodide leading to jonic			
	bonding) (1)			
	Answer 'Mgl ₂ ' alone scores			
	(0)			
	(-)	1	1	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (a)	A proton donor or hydrogen ion donor or H ⁺ donor (1)			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)(i)	$K_{a} = \frac{[CH_{3}CH_{2}COO^{-}][H_{3}O^{+}]}{[CH_{3}CH_{2}COOH]}$	[H ⁺] for [H₃O ⁺] throughout	$\frac{(CH_{3}CH_{2}COO^{-})(H_{3}O^{+})}{(CH_{3}CH_{2}COOH)}$ Any expression with [H ₂ O]; [HA] and [A ⁻]	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)(ii)	$[H_3O^+] = \int (K_a \times c)$ = $\int (1.3 \times 10^{-6} \text{ (mol}^2 \text{ dm}^{-6}))$ = 1.14 x 10 ⁻³ (mol dm ⁻³) Ignore units.	1.1 x 10 ^{- 3} (mol dm ^{- 3})	1 x 10 ⁻³ (mol dm ⁻³)	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)(iii)	$[CH_{3}CH_{2}COOH]_{initial} = [CH_{3}CH_{2}COOH]_{equilibrium} (1)$ assumption is justified since K_{a} is small OR $[H^{+}] << 0.10 \text{ mol dm}^{-3} (1)$ Conditional on first mark.	[CH ₃ CH ₂ COOH] _{equilibrium} = 0.10 mol dm ⁻³ A very small fraction/amount of the acid is dissociated (into ions) OWTTE. Conditional on first mark.	Non standard conditions Acid is partially dissociated; acid is very weak	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (c)(i)	CH ₃ CH ₂ COO ⁻ + H ₂ O → CH ₃ CH ₂ COOH + OH ⁻ Allow structural or partially structural formulae. Ignore state symbols.	Equilibrium arrow $CH_3CH_2COO \ Na^+ + H_2O$ $\rightarrow CH_3CH_2COOH + OH \ + Na^+$	CH₃CH₂COONa on lhs Na⁺OH ⁻	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (c)(ii)	Either: 14 = 8.94 + pOH (1) pOH = 5.06 $\therefore [OH^{-}] = 8.7 \times 10^{-6} \text{ mol dm}^{-3}$ (1) unit required Or: $[H_3O^+] = lg^{-1}(-8.94)$ $= 1.15 \times 10^{-9} \text{ (mol dm}^{-3}) (1)$ $\therefore [OH^{-}]$ $= 1.00 \times 10^{-14} \text{ (mol}^2 \text{ dm}^{-6})$ $1.15 \times 10^{-9} \text{ (mol dm}^{-3})$ $= 8.70 \times 10^{-6} \text{ mol dm}^{-3} (1)$ unit required. Accept 2 sf or more. Allow consequentially on rounding errors for [H^+], but not otherwise. Correct answer with units but no working (2)	8.71 x 10 ⁻⁶ mol dm -3 1.148 x 10 ⁻⁹ (mol dm ⁻³) giving final answer of 8.71 x 10 ⁻⁶ mol dm -3	9 x 10 ⁻⁶ mol dm ⁻³ 1.15 x 10 ⁻⁹ alone with no further answer 9 x 10 ⁻⁶ mol dm ⁻³	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (d)(i)	First mark: $C_2H_5COOH + OH^- \rightarrow$ $C_2H_5COO^- + H_2O$ OR $H^+ + OH^- \rightarrow H_2O$ and $C_2H_5COOH \rightarrow C_2H_5COO^- + H^+$ (1)	NaOH for OH ⁻ with Na ⁺ on rhs		4
	Second mark: $C_2H_5COO^- + H_3O^{+\rightarrow}$ $C_2H_5COOH + H_2O$ (1)	$C_2H_5COO^- + H^+ \rightarrow C_2H_5COOH$		
	large excess/reservoir/reserve/amount of both the acid and its anion or its salt (1)			
	Fourth mark: the amount of H ⁺ or OH ⁻ added is small(er) (1)	Amount small compared with		
	If the candidate uses ethanoic acid, or HA/A ⁻ , in the two equations but all of them are otherwise correct award (1) only.			

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		-
3 (d)(ii)	First mark: [sodium propanoate] = 0.015÷ 0.300 (mol dm ⁻³) = 0.050 (mol dm ⁻³) (1) Second mark: [propagoic acid]	0.15÷3		4
	$= 0.0200 \div 0.300 \text{ (mol dm}^{-3}\text{)}$ $= 0.0667 \text{ (mol dm}^{-3}\text{) (1)}$	0.20÷3		
	Correct concentrations plus working score (2)			
	Third mark: $[H_3O^+] = \frac{1.3 \times 10^{-5} \times 0.0667}{0.050}$ $= 1.73 \times 10^{-5} (mol dm^{-3})$			
	$\begin{array}{l} \text{OR} \\ \text{pH} = 4.89 + \lg (0.050 \div 0.0667) \\ = 4.89 - 0.127 \text{ (1)} \end{array}$			
	∴ pH = 4.76 (1)	4,77, 4,8	5	
	Third and fourth marks score consequentially on incorrect concentrations only if these are used in the correct expression. If no notice of volume change on mixing is taken, the answer is pH = 5.06 and this could score	5.1		
	the last two marks.			
	Two sf or more			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (d)(iii)	[acid]÷ [salt] does not (significantly) change OR the acid : salt ratio does not (significantly) change (1)	[anion] for [salt]; [HA]/{A ⁻]	amounts do not change; acid and salt diluted equally on its own; concentrations do not change.	1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
4 (a)	CH ₃ CH ₂ MgBr or CH ₃ CH ₂ Mg-Br	Other halogens;	$CH_3CH_2Mg^-Br^+$	1
	or $CH_3CH_2Mg^+ Br^-(1)$	C_2H_5 for CH_3CH_2- ;	CH ₃ CH ₂ BrMg	
		CH₃CH₂MgX		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)(i)	The oxidation state for dichromate is not necessary, but if there it must be (VI); the o.s. for manganate(VII) is necessary. potassium dichromate(VI) + sulphuric acid OR $K_2Cr_2O_7 + H_2SO_4$ or H ⁺ OR $Cr_2O_7^{2-} + H_2SO_4$ or H ⁺ OR potassium manganate(VII) + sulphuric acid OR potassium permanganate + sulphuric acid OR $KMnO_4 + H_2SO_4$ or H ⁺ (1) Ignore dilute or conc.	acidified dichromate(VI) OR acidified manganate(VII) OR acidified permanganate. Hydrochloric acid or HCl(aq) with dichromate only .	Names and formulae which don't agree. HCl	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)(ii)	Any apparatus that cannot work (except for presence of a stopper) or is inappropriate, or is blocked between condenser and flask, scores zero overall. Ignore any substances/labels. First mark: condenser and flask (more or less) vertical (1). Allow these to be shown without a joint. Second mark: heating mantle OR Bunsen burner OR sand bath OR oil bath (1) Third mark: reasonable sectional drawing that will work, and is not stoppered (1). Ignore any thermometer in the top of the condenser unless placed	Ignore water flow direction 'heat' with an arrow	an arrow alone; water bath	3
	there in a bung.			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (c)(i)	KCN + H ₂ SO ₄ or H ⁺ or named acid; OR KCN + HCN OR HCN + NaOH or OH ⁻ or base (1)	HCN or hydrogen cyanide		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (c)(ii)	CH3 OH	No need to show all the bonds		1
	CH ₃ CH ₂ CH ₂ NH ₂ (1)	C_2H_5 for CH_3CH_2		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (d)(i)	The mark can be given for a correct structure here if (c)(ii) is wrong, or for correct protonation of the structure given in (c)(ii).			1
	$CH_3 OH$ $CH_3CH_2 CH_2NH_3^+$ (1)	No need to show all the bonds C ₂ H ₅ for CH ₃ CH ₂	-HO once only	
	Can show a chloride ion as well, or -CH ₂ NH ₃ Cl without the charges. A fully displayed formula\ must have the + charge on the nitrogen atom.	Bonds from alkyl groups acceptable as shown.		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (d)(ii)	CH ₃ OOCCH ₃ CH ₃ CH ₂ CH ₂ NHCOCH ₃ (2) (1) for reaction with OH, (1) for reaction with NH ₂ Correct structure or one consequential on (c)(ii) scores.	C ₂ H ₅ for CH ₃ CH ₂ -OCOCH ₃ No need to show all the bonds	-CO ₂ CH ₃ -CH ₂ CONHCH ₃	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (e)(i)	Non-superimposable on its mirror image (1)	four different groups around a given atom OR Asymmetric carbon atom OR (molecule with) no centre or plane of symmetry	Four groups around a carbon molecule	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (e)(ii)	Rotates the plane of polarisation of (plane polarised monochromatic) light (in opposite directions) (1)	Plane polarised light is rotated	bends, twists, turns, deflects, refracts; rotating molecules.	1

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
4 (e)(iii)	First mark:			3
	Ethanal is (a) planar (molecule		linear (next two marks	
	around the carbonyl group) (1)		can score);	
			intermediate	
	This mark must refer to		carbocation or	
	ethanal.		intermediate molecule	
	Second mark:			
	attack from both or either			
	side(s) (1)			
	-			
	Third mark:			
	Reaction gives an equimolar,			
	or 50:50, or racemic, mixture			
	(of the two enantiomers of			
	butan-2-ol) (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (a)(i)	CO ₂ acidic (1) PbO basic or amphoteric (1) PbO more basic than CO ₂ OR Basic character increases down the group (1) only. Ignore any explanations.	Correct equations showing these properties.	Answers with incorrect formulae, e.g CO or PbO ₂ Basic solution; alkali.	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (a)(ii)	SiCl₄ covalent liquid (1) PbCl₂ ionic solid (1) For (1): Covalent and ionic alone (1) liquid and solid alone (1)		Giant covalent	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (b)	$\begin{array}{r} \text{SiO}_2 + 2\text{NaOH} \rightarrow \\ & \text{Na}_2\text{SiO}_3 + \text{H}_2\text{O} \\ \text{OR} \\ \text{SiO}_2 + 2\text{OH}^- \rightarrow \\ & \text{SiO}_3^{2^-} + \text{H}_2\text{O} \text{ (1)} \\ \text{Ignore any state symbols} \\ \text{even if wrong.} \end{array}$			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (c)(i)	First mark: Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl		Any structure with 90° bond angles. "4 bonds/atoms repel" loses 3 rd mark. bond pairs repel equally	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (c)(ii)	 C⁴⁺ requires too much energy for its formation to be recovered via any sort of bonding (1) C⁴⁺ has high charge and small size OR C⁴⁺ has high charge density (1) 	Recovered via lattice energy	High <i>E</i> _a Any answer based on electronegativity differences.	3
	it would be extremely polarising of Cl ⁻ (giving polar covalent bonds) (1)		Atoms polarised	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (d)(i)	acid-base (1)	neutralisation	protonation	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (d)(ii)	Disproportionation or the idea of it scores (0) overall. Either: redox (1) because o.s. of lead changes from +4 to +2 and o.s. of chlorine changes from -1 to 0. (1) stand alone.	Oxidation-reduction o.s. of lead goes down and o.s. of chlorine goes up OR lead(IV) has gained electrons and chloride has lost		2
	Or: Reduction because Pb ⁴⁺ / Pb(IV) gives Pb ²⁺ /Pb(II) (1) Oxidation because Cl ⁻ /Cl(-1) gives Cl(0) (1)	electrons		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (d)(iii)	Tin o.s. is more stable as +4 but lead as +2 OR The +2 state becomes more stable than +4 down the group (1)			2
	so lead(IV) oxide is an oxidising agent (1) stand alone	PbO ₂ is reduced by HCl Pb ⁴⁺ /Pb(IV) is oxidising		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6 (a)(i)	amount of substance volume OR number of moles per dm ³ (1)	Amount of substance in (given) volume	Mass per unit volume OR ppm OR moles per unit volume of solvent	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6(a)(ii)	$K_{c} = \frac{[CH_{3}COOCH_{2}CH_{3}][H_{2}O]}{[CH_{3}CH_{2}OH][CH_{3}COOH]}$		round brackets	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6 (b)(i)	2.43 (mol dm ⁻³) V If units given they must e correct.			1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
6 (b)(ii)	2.43 (moles) (1)			1
	Ignore units.			

Correct Answer	Acceptable Answers	Reject	Mark
First mark: amount of ethanoic acid (at equilibrium) = $5.00 - 2.43 = 2.57 \text{ mol (1)}$ Second mark: amount of ethanol (at equilibrium) = 0.57 mol (1) If [H ₂ O] is omitted in (a)(ii) only the 1 st and 2 nd marks can be awarded .	Values only without working score.		4
Third mark: $K_c = (2.43 \div V)(2.43 \div V)$ (1) $(2.57 \div V)(0.57 \div V)$ V must be used to obtain the 3^{rd} mark, either here or by giving the concentrations separately OR candidate states Vs cancel. Fourth mark: = 4(.03) (1) ignore sf. 3^{rd} and 4^{th} marks can be awarded consequentially on a reciprocal K in(a)(ii). Correct answer with no working (1) only	Third and fourth marks consequential on their values above.	Calculations based on the idea of mole fractions cannot score the 3 rd and 4 th marks.	
	First mark: amount of ethanoic acid (at equilibrium) = 5.00 - 2.43 = 2.57 mol (1) Second mark: amount of ethanol (at equilibrium) = 0.57 mol (1) If [H ₂ O] is omitted in (a)(ii) only the 1 st and 2 nd marks can be awarded . Third mark: $K_c = (2.43 \div V)(2.43 \div V) (1)$ $(2.57 \div V)(0.57 \div V)$ V must be used to obtain the 3 rd mark, either here or by giving the concentrations separately OR candidate states Vs cancel. Fourth mark: = 4(.03) (1) ignore sf. 3 rd and 4 th marks can be awarded consequentially on a reciprocal K in(a)(ii). Correct answer with no working (1) only.	First mark: amount of ethanoic acid (at equilibrium) = $5.00 - 2.43 = 2.57 \text{ mol (1)}$ Values only without working score.Second mark: amount of ethanol (at equilibrium) = 0.57 mol (1) Values only without working score.If [H ₂ O] is omitted in (a)(ii) only the 1 st and 2 nd marks can be awarded .Values only without working score.Third mark: $K_c = (2.43 \div V)(2.43 \div V)$ (1) $(2.57 \div V)(0.57 \div V)$ Third and fourth marks consequential on their values above.V must be used to obtain the 3 rd mark, either here or by giving the concentrations separately OR candidate states Vs cancel.Third and fourth marks can be awarded consequentially on a reciprocal K in(a)(ii).Gorrect answer with no working (1) only.Image: state	First mark: amount of ethanoic acid (at equilibrium) = $5.00 - 2.43 = 2.57 \text{ mol (1)}$ Values only without working score.Second mark: amount of ethanol (at equilibrium) = 0.57 mol (1) Values only without working score.Values only without working score.If [H ₂ O] is omitted in (a)(ii) only the 1 st and 2 nd marks can be awarded .Values only without marks consequential on their values above.Calculations based on the idea of mole fractions cannot score the 3 rd and 4 th marks.V must be used to obtain the 3 rd mark, either here or by giving the concentrations separately OR candidate states Vs cancel.Third and fourth marks consequential on their values above.Calculations based on the idea of mole fractions cannot score the 3 rd and 4 th marks.S rd and 4 th awarded consequentially on a reciprocal K in(a)(ii).Sime and a score correct answer with no working (1) only.Sime and a score the additional sc

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6 (b)(iv)	Volumes or mol dm ⁻³ cancel so no units Consequential on expression for K _c in (a)(ii)	Units cancel; Equal number of moles on each side		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6 (c)(i)	None/no effect/nil effect/zero effect/no change (1)			1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
6 (c)(ii)	None/no effect/nil			1
9080 GCE Chemistry				

effect/zero effect/no change		
(1)		

6245/01

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (a)(i)	$3d^{6}$ $3d^{5}$ (1) - both needed for mark	Full electronic configuration from 1s ² OR separate 3d orbitals 4s ⁰ before or after 3d		1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
1 (a)(ii)	Fe³⁺	5 x ½ filled (3)d	Half-filled d orbitals	1
QWC	because it has a half-filled <u>d</u> -	orbitals		
	(sub-)shell (1)	Half filled set of 3d		
		orbitals		

1 (a)(iii) QWCd-orbitals split by ligands (1) do not allow d-orbital - singulard sub shell for d orbitalsAny mention of emitted light results in 1st mark only being possible3	Question Number	Correct Answer	Acceptable Answers	Reject	Mark
absorption of light (of certain colour/frequencies)(s) (1) Electron promoted causing absorption of light leads to electron transition from lower to higher energy level Must be clear that electron promotion is caused by absorption of light. If not only 1 st mark available (1) If sequence is wrong only the 1 st mark is available. If sequence is wrong only the 1 st mark is available.	1 (a)(iii) QWC	 d-orbitals split by ligands (1) do not allow d-orbital - singular absorption of light (of certain colour/frequencies)(s) (1) leads to electron transition from lower to higher energy level Must be clear that electron promotion is caused by absorption of light. If not only 1st mark available (1) If sequence is wrong only the 1st mark is available. 	d sub shell for d orbitals	Any mention of emitted light results in 1 st mark only being possible. Electron promoted causing absorption of light	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (a)(iv)	energy separation of the <i>d</i> -orbitals is different	Accept 'different splitting' if <i>d</i> - orbitals split in (iii).	e's are promoted to different energy levels.	1

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
Question Number 1(b)(i)	Correct Answer Name hexaaquairon(III) OR hexaquairon(III) (1) Shape and charge (1) Some examples of correct answers $\begin{bmatrix} 0H_2 \\ H_20H_2 \\ H_20H_2 \end{bmatrix}^{3+}$	Acceptable Answers Charge shown on the Fe itself.	Reject Reject any other answers.	Mark 2
	$ \begin{array}{c} $		H20"" H20 OH2	
	Allow bond to H of the H ₂ O on right- hand equatorial ligands and axial ligands only.			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)(ii)	$[Fe(H_2O)_6]^{3^+} + H_2O \square [Fe(H_2O)_5OH]^{2^+} + H_3O^+ (1)$	"→" for "□"	[Fe(H ₂ O) ₆] ³⁺ □ [Fe(H ₂ O) ₅ OH] ²⁺ + H ⁺	1
			"aq" instead of "H2O"	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)(iii)	Add (excess) acid/H ₃ O ⁺ /H ⁺ Ignore any reference to concentration	Formula or named strong acid		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (c)(i)	(dirty/grey/dark) green precipitate (1) $[Fe(H_2O)_6]^{2+} + 2OH^- \rightarrow$ $Fe(OH)_2 + 6H_2O (1)$ Square brackets not essential	Green ppt going brown Fe(OH) ₂ (H ₂ O) ₄ + 2H ₂ O as product	Pale/light green Fe ²⁺ +20H ⁻ →Fe(OH) ₂	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (c)(ii)	It turns foxy-red/brown/red- brown/rusty (1)	Orange	Red/brick red OR mention of soln	2
	oxidation by oxygen (1)		Oxidation by air OR redox	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (d)(i)	Amount R reduced = (1.98 ÷ 198 mol) = 0.010 mol (1) Amount Fe ²⁺ oxidised = (4.56 ÷ 152 mol) = 0.030 mol (1)			4
	oxidation state of R changes by 3/1 mole of R gains 3 moles of electron (1) Fe(VI)/+6/6+ (1) stand alone		Just "ratio 1:3"	
			Just "6"	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (d)(ii)	K ₂ FeO ₄		FeK ₂ O ₄	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (a)	$\begin{array}{c} & & & & & & \\ & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & &$	If use HBr max 2		3
	both arrows initially - allow arrow from π bond towards / to bromine but not from sigma bond past bromine (1) Carbocation (1) arrow from bromide ion towards/to positive carbon atom (1) Lone pair on bromide ion is not necessary Arrow can come from negative charge Ignore partial charges on Br_2 Ignore product Ignore any groups on C=C	bromonium ion intermediate H HH HH H H		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(i)	Amount linolenic acid = (100 \div 278 mol) = 0.360 mol (1) amount I ₂ = (274 \div 254 mol) = 1.08 mol (1) Ignore sf for first 2 marks Inumber of C=C bonds = (1.08 \div 0.360) = 3 (1) 3 rd mark conditional on first 2 marks If 127 is used hence 6 double bonds max (2)		1.07	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(ii)	С ₁₇ H ₂₉ COOCH ₂ C ₁₇ H ₂₉ COOCH C ₁₇ H ₂₉ COOCH ₂ (1)	No need to show the -COO- structure in full. Allow -CO ₂ - for -COO-	C ₁₇ H ₂₉ OCO	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(iii)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	KOH Charges not necessary	Covalent bond between O and Na	2

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
3 (a)(i)	- 360 (kJ mol ⁻¹)	- 360 kJ	- 360 J mol ⁻¹	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (a)(ii)	Energy (14 3HL) I stalifiation energy	Omission of 3H ₂		2
	Relative energy levels of the three compounds (1)			
	Stabilisation energy/152 marked (1)	- 152		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (a)(iii) QWC	Benzene has delocalised π-electrons/π-system (1) Cyclohexatriene would have (localised) double/π-bonds (1)		delocalised π-bond	3
	Either this makes benzene less reactive to electrophiles OR this makes benzene have a higher activation energy with electrophiles (1)	Inverse argument		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)(i)	$ \begin{array}{c} & & H \mathbb{N} \mathbb{O}_{2} \\ & & H \mathbb{N} \mathbb{O}_{3} \end{array} & & H_{2} \mathbb{O} \\ & & & (1) \\ & & & (1) \\ & & & & & (1) \\ & & & & & (1) \\ & & & & & (1) \\ &$	C_6H_6 for benzene $C_6H_5NO_2$ for nitrobenzene ignore H_2SO_4 on both sides		1

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
3 (D)(11)	$2H_2SO_4 + HNO_3 \rightarrow H_3O + NO_2 + 2HSO_4$			4
	$H_{a}SO_{a} + HNO_{a} \rightarrow H_{a}O + NO_{a}^{+} + HSO_{a}^{-}$ (1)			
	112504 + 11103 + 1120 + 1102 + 11304 (1)			
	or both of:			
	$H_2SO_4 + HNO_3 \rightarrow H_2NO_3^+ + HSO_4^-$			
	then $H_2NO_3^+ \rightarrow H_2O + NO_2^+$			
	OR			
	$H_2NO_3^+ + H_2SO_4 \rightarrow H_3O^+ + NO_2^+ + HSO_4^-$			
	$ \overset{\boldsymbol{\Theta}}{}_{NO_2} \overset{\boldsymbol{\Theta}}{\longrightarrow} \overset{\boldsymbol{\Theta}}{}_{NO_2}^H $			
	$\begin{array}{c} \textcircled{\begin{tabular}{c} \label{eq:stabular} H & H & H & H \\ \hline \end{tabular} H & H & H & H & H \\ \hline \end{tabular} H & H & H & H & H & H & H \\ \hline \end{tabular} H & H & H & H & H & H & H & H & H & H $			
	2 nd mark			
	Curly arrow from double bond/ circle towards			
	N of $NO_{2}^{+}(1)$			
	3 ¹⁴ mark			
	for the delocalised electrons it must extend			
	over more than the 3 carbons and must be			
	broken at the substituted C) (1)			
	4 ^{ee} mark			
	Curly arrow from C-H bond back into ring (1)			
	Allow loss of H			
	All marks stand alone			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)(iii)	Avoids formation of (1,3-) dinitrobenzene (1) Ignore numbers	Avoids further nitration/substitu tion <i>m</i> -dinitrobenzene for 1,3- dinitrobenzene	Avoids further reaction .	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (c)(i)	→ CH ₃ COC1 → CH ₃ COCCH ₃ + HC1	Equations for the reaction with sodium/carboxylic acid/PCl ₅		2
	$CH_3 CH_2 OH + CH_3 COCl \longrightarrow CH_3 CH_2 OOCCH_3 + HCl$	C_6H_5 for ring		
	Common reagent and both organic products (1)	$CH_3COOCH_2CH_3$ for the ester		
	Both balanced (1) Conditional on 1 st mark If OCOCH ₃ in product only 2 nd mark can be scored	- O•CO•CH ₃		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (c)(ii)	$\overrightarrow{P}_{P} (1)$ $\overrightarrow{P} (1)$ $\overrightarrow{P} (1)$ $\overrightarrow{P} (1)$ $\overrightarrow{P} (1)$ $\overrightarrow{P} (1)$ $\overrightarrow{P} (1)$	C ₆ H ₅ in first equation Reaction with diazonium ion/nitric acid/halogenoalkan e	Reaction with acid chloride Bromophenols other than the 2,4,6- isomer.	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (d)(i)	Tin/Sn OR iron/Fe and concentrated hydrochloric acid/ concentrated HCl (1) Ignore reference to sodium hydroxide/NaOH/alkali			`

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (d)(ii)	Cation or chloride salt (1) balanced equation with OH ⁻ or NaOH (1)	C_6H_5 for ring		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (d)(iii)	< 0 °C too slow (1)			2
	> 10 °C product/nitrous acid decomposes (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (d)(iv)	Must show + charge and the bonds around N	C_6H_5 for ring $C_6H_5N=N^+$ $(C_6H_5N≡N)^+$	Covalent bond between N and Cl	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (d)(v)	(Strongly) alkaline OR pH ≥ 9 (1)	NaOH/OH ⁻ /Na ₂ CO ₃	Any reference to heat under reflux	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (d)(vi)	N=N link between rings (1) for the remainder of the molecule conditional on 1 st mark (1)	OH of the phenol can be in any position. Allow -O ⁻ for -OH	C_6H_5 or C_6H_4 for rings	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)	k/rate constant changes with change in temperature		Just "rate changes with temperature"	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)(i)	I ₂ + 2S ₂ O ₃ ² → S ₄ O ₆ ² + 2I (1) If equation is given: E^0 = is positive/(+) 0.45 (V) (1) conditional on correct species on correct sides If equation not given: E^0 is (+)0.45 (V) scores 2 nd mark. If equation reversed 0.	$^{\Box}$ E^{0} for I_{2}/I^{-} is more positive than that for $S_{4}O_{6}^{2^{-}}/S_{2}O_{3}^{2^{-}}$		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)(ii)	Stops the reaction			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)(iii)	CH ₃ COCH ₃ +3I ₂ +40H ⁻ →CHI ₃ +3I ⁻ +CH ₃ COO ⁻ +3H ₂ O iodoform formula (1) remainder (1)	NaOH for OH Nal for I CH3COONa for CH3COO	C ₃ H ₆ O	2
Question Number	Correct Answer	Acceptable Answers	Reject	Mark
--------------------	---	-----------------------	--------	------
4 (c)(i)	$\begin{array}{c} 0.05 \\ 0.04 \\ 0.03 \\ 0.02 \\ 0.01 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$			2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (c)(ii)	Zero (1) because the reaction rate is constant (1) 2 nd mark conditional on 1 st		Just 'because it is a straight line/constant gradient'	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (c)(iii)	One/1/1 st /first (1)			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4(c)(iv)	iodine (of order zero so) is not involved in rate- determining step (1) Either Propanone is first order so involved in RDS (or earlier) OR Iodine is a reactant/in the formula of the product (1) <u>If 1st or higher order in (ii)</u> Three species affect rate (1) Three body collision unlikely (1) (so there must be at least two steps)	Partial orders not equal to stoichiometry therefore must take place in more than one step scores (2)		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (d)	Colorimeter (1) Either take readings over a period of time/specified times OR Monitor/take readings during the reaction (1) Conditional on 1 st mark	calibrated with known concentrations of iodine	Any mention of starch scores 0. Not just "calibrated"	2

Question	Correct Answer			Acceptable	Reject	Mark
5 (a)				Answers	Just "no reaction"	3
		CH ₃ CH ₂ CHO	CH ₃ COCH ₃	No visible		
	Tollens' (1)	silver (1)	no change	reaction		
			(1)	allowed for		
	OR	silver	no change	no change		
	ammoniacal					
	silver nitrate					
	If no ammonia					
	max i					
	(silver' and 'no					
	change' needed					
	for 1 mark					
	OR	brown ppt	no			
	Fehling's	/red ppt	change/stays			
			blue			
	OR	brown ppt	no			
	Benedict's	/red ppt	change/stays			
			blue			
	UK ladina in alkali /	no change	yellow ppt			
	lodine in alkali /					
	No alkali may 1					
	OR	turns green	no			
	Acidified		change/stays			
	dichromate(VI)		orange			
	if not acidified		5			
	max 2					
	OR	turns	no			
	Acidified	colourless	change/stays			
	manganate(VII)		purple			
	if not acidified					
	max 2					

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (b)	Propanal 3 peaks (1) ratio 3:2:1 (1) Propanone 1 peak (1)	Ignore "6" for area		3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (c)	Both show the same carbonyl absorption/peaks/ around 1700 cm ⁻¹ (1)		Just "same absorption"	1

6246/01A

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
1 (a)	Table 1Both weighings recorded in correct spaces to at least 2 dp (1)Weighings correctly subtracted (1)[✓ ✓ RHS of Table 1]			12
	Table 2			
	Check subtractions and averaging arithmetic correcting if necessary.			
	All volumes recorded to 0.05 cm ³ (1) Allow one slip but withhold this mark if any readings are in the wrong boxes. Allow 0, 0.0, 0.00 as initial volume. NOT 50 as initial volume.			
	All subtractions completed correctly (1) [✓ ✓ top RHS of Table 2]			
	Mean titre For correct averaging of chosen titres, correctly subtracted or for choosing identical titres and for recording the mean correct to 2 or mor dp or to 0.05 cm ³ [unless already penalised in Table 2] (1) [✓ by the mean in space or near the dotted line in paragraph below]	e		
	Accuracy			
	If the candidate has made an arithmetical error in Table 2 or in averaging then the examiner must calculate a new average.			
	• For an averaging error simply calculate a new value using the			
	 candidate's chosen values If a wrongly subtracted titre has been used in the mean then choose any two identical titres or take an average of the closest two 	se		
	Home centres			
	For each candidate calculate			
	[*corrected if necessary]			
	International centres			
	For each candidate calculate Supervisor's mean titre x candidate's mass B			
	Supervisor's mass B			
	= expected titre			
	the expected titre.			
	Record the difference as			
	d = on the script			
	Award marks for accuracy as follows $d = 1000$ ± 0.20			
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	g		
	e The range(r) is the difference between the outermost titres used to calculate the mean. If the examiner has corrected titres because of incorrect subtraction then award the range on the corrected titres used by the examiner to calculate the mean.			
L	1		<u> </u>	1

r =	0.20	0.30	0.50	1	
Mark	3	2	1	-	
				J	
Examiner	to show th	e marks a	warded fo	」 r accuracy and range as	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)(i)	moles $\mathbf{B} = \frac{\text{mass } \mathbf{B}}{392}$ Ignore units Answer to at least 3 SF	Penalise SF once only in (i) and (ii) and allow loss of trailing zeros if correct arithmetically in (i) and (ii)		1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
1 (b)(ii)	Moles B in 25.0 cm ³			1
	= answer to (b)(i)			
	10			
	Ignore units			
	Answer to at least 3 SF			

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
1 (b)(iii)	Moles MnO ₄ ⁻ in mean titre = $\frac{\text{answer to (b)(ii)}}{5}$ (1) $\frac{5}{1000}$ Conc ⁿ MnO ₄ ⁻ = $\frac{\text{moles MnO_4}}{1000}$ in mean titre x			3
	mean titre (1) Answer to 3 SF only e.g. 0.0200 (1) Ignore units			

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
1 (c)	Either KMnO ₄ acts as own indicator or / excess unreacted KMnO ₄ colours solution in flask or description of colour change in flask			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (a)	Observations Brown precipitate (1) Insoluble in excess (1)	Foxy - red		3
	Inference Fe(OH) ₃ / iron(III) hydroxide (1)	[Fe(H ₂ O) ₃ (OH) ₃]		

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
2 (b)(i)	Observations Brown / Orange / Red (solution) (1) Blue / Black / Blue-black (1) Ignore any ppts Inference Iodine / I ₂ / KI ₃ (1)		1	3

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
2 (b)(ii)	2Fe^{3+} + $2\text{I}^- \rightarrow 2\text{Fe}^{2+}$ + I_2	multiples		1
	[Ignore state symbols]			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)	Observations Blue precipitate (1) Insoluble in excess NaOH (1) Ignore further observations			3
	Inference Co(OH) ₂ / cobalt(II) hydroxide (1)	[Co(H ₂ O) ₄ (OH) ₂]	Any Cu compounds	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (d)(i)	Observation Blue (solution) (1) Inference [CoCl ₄] ²⁻ (1)		CoCl₂ Any Cu complex / compound	2

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
2 (d)(ii)	Ligand exchange /substitution			1
	(1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (e)	Observation White precipitate (1) Inference CoSO ₄ (1)	Allow CuSO₄as a cq answer	Any coloured precipitate.	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (a)	Observation (Orange to) green / blue (1) Inferences Oxidation (1) Primary, secondary alcohol, aldehyde; all three for (1)	Dichromate oxidises	Redox /reduction E is a reducing agent $Cr_2O_7^{2-} \rightarrow 2Cr^{3+}$	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)	Observations Blue to red litmus and (red litmus no change) (1) White / misty / Steamy fumes /vapour (1) Inference (Primary or secondary) alcohol / 'not an aldehyde' if follows 3 rd mark in (a) (1)		White smoke Any answer including carboxylic acid	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (c)	Observation (Pale) yellow precipitate (1) Inferences Iodoform / tri-iodomethane / CHI ₃ (1) CH ₃ CHOH / methyl secondary alcohol (or ethanol) (1)		Any answer including methyl ketone / CH ₃ CO / ethanal	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (d)	CH ₃ CH(OH)CH ₃	Full structural / skeletal formula	—H—O bond	1

3 (c), (d)

If no ppt observed in (c) then may allow 3rd mark in (c) for e.g. 'not methyl secondary alcohol (or ethanol)' then allow propan-1-ol in (d).

Question	Correc	t Answer	Acceptable Answers	Reject	Mark
Number					7
4	T1 ✓	Candidate's test on all four compounds			/
	T2	Observation and inference from test on all four compounds			
		Candidate's second test			
	^{K2} √	Observation and inference from second test			
	13	Candidate's third test			
	R3	Observation and inference from third test			
	L_⁄	Remaining compound is cyclohexane			
	Tests a can be observ	and observations / inferences which done in any order. Each test and ation to maximum (2)			
	• 2, • Ob	4 – DNP / Brady's reagent oservation + logical deduction			
	• loc Ob	doform test pservation + logical deduction			
	• Fe dic Ob	hling's / Tullens/ acidiefied chromate (VI) pservation + logical deduction			
	• Aq by Ob	ueous $AgNO_3$ – could be preceded NaOH + HNO ₃ oservation + logical deduction			
	If ident each te	ity of compound is assumed then est (0) but observation (1).			
	Ignore	conditions throughout.			

Group 1 (6246/01A): this practical test must be taken on the day specified on the official timetable, and is available to Home Centres, International Teaching Institutions and International Centres.

Apparatus and Materials

Apparatus

- eight test tubes in a test tube rack; 1.
- 2. 10 cm³, 25 cm³ or 50 cm³, and 100 cm³ measuring cylinders;
- 3. a supply of dropping pipettes;
- 4. spatula;
- 5. access to balance weighing to at least 0.01 g;
- one 250 cm³ beaker; 6.
- one 250 cm³ volumetric flask with stopper; 7.
- funnel to fit volumetric flask; 8:
- 9. glass rod;
- 50.0 cm³ burette, in stand and clamp, with small funnel for filling: 10.
- small beaker for draining burette; 11.
- 25.0 cm³ pipette and safety filler; 12.
- white tile; 13.
- two 250 cm³ conical flasks; 14.
- a supply of hot water (about 70 °C) and a 250 cm³ beaker for a water bath; 15. needs to be presh as possible
- 16. access to fume cupboard.

Materials

Each candidate will require:

- 200 cm³ of aqueous potassium manganate(VII), KMnO₄>of concentration 0.0200 mol dm⁻³ $(a)^*$ labelled Solution A. The concentration of this solution is not to be disclosed to candidates;
- (b)* between 8.9 g and 9.1 g of ammonium iron(II) sulphate, (NH₄)₂SO₄.FeSO₄.6H₂O, in a stoppered weighing bottle or similar labelled B;
- (c)* 10 cm³ of aqueous iron(III) chloride of concentration 0.25 mol dm⁻³ labelled C. The identity of this solution is **not** to be disclosed to candidates;
- (d)* 10 cm³ of aqueous cobalt(II) sulphate of concentration 0.25 mol dm⁻³ labelled **D**. The identity of this solution is **not** to be disclosed to candidates;
- $(e)^{*}$ 5 cm³ of propan-2-ol labelled E. The identity of this compound is not to be disclosed to candidates:
- 200 cm³ of dilute sulphuric acid; concentration approximately 1.0 mol dm⁻³, labelled dilute (f) sulphuric acid;
- 15 cm³ of dilute sodium hydroxide; concentration approximately 0.5 mol dm⁻³; (g)
- 5 cm^3 of dilute sulphuric acid; concentration approximately 1.0 mol dm⁻³; (h)
- 5 cm^3 of dilute hydrochloric acid; concentration approximately 2.0 mol dm⁻³; (i)
- 5 cm^3 of aqueous barium chloride; concentration approximately 0.2 mol dm^{-3} ; (j)
- 5 cm^3 of aqueous potassium iodide; concentration approximately 0.5 mol dm^{-3} ; (k)
- (1) 5 cm^3 of aqueous potassium dichromate(VI); concentration approximately 0.20 mol dm⁻³;
- (m) access to a bottle of concentrated hydrochloric acid;
- access to a bottle of phosphorus pentachloride; (n)
- 10 cm³ of iodine/potassium iodide solution made by adding 2 g iodine to 6 g potassium iodide (0)dissolved in 100 cm³ water and labelled aqueous iodine;
- 5 cm³ of freshly prepared aqueous starch; concentration approximately 1%; (p)
- blue and red litmus paper; (q)
- a supply of distilled water. (r)

For home centres (ONLY), the chemicals identified with an asterisk (*) will be sent by a firm of manufacturing chemists.

6246/01B

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
1 (a)	Table 1Both weighings recorded in correct spaces to at least 2 dp (1)Weighings correctly subtracted (1)[~~~ RHS of Table 1]			12
	Table 2			
	Check subtractions and averaging arithmetic correcting if necessary.			
	 All volumes recorded to 0.05 cm³ (1) Allow one slip but withhold this mark if any readings are in the wrong boxes. Allow 0, 0.0, 0.00 as initial volume. NOT 50 as initial volume. All subtractions completed correctly (1) [✓ ✓ top RHS of Table 2] 			
	Mean titre For correct averaging of chosen titres, correctly subtracted or for choosing identical titres and for recording the mean correct to 2 or more dp or to 0.05 cm ³ [unless already penalised in Table 2] (1) [✓ by the mean in space or near the dotted line in paragraph below]			
	 Accuracy If the candidate has made an arithmetical error in Table 2 or in averaging then the examiner must calculate a new average. For an averaging error simply calculate a new value using the candidate's chosen values If a wrongly subtracted titre has been used in the mean then choose any two identical titres or take an average of the closest two. 			
	Home centres For each candidate calculate *mass G x 2.55 = expected titre [*corrected if necessary] International centres For each candidate calculate <u>Supervisor's mean titre</u> x candidate's mass G Supervisor's mass G = expected titre Calculate the difference(d) between the candidate's mean titre and the expected titre. Record the difference as d = on the script			
	Award marks for accuracy as follows			
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
	The range(r) is the difference between the outermost titres used to calculate the mean. If the examiner has corrected titres because of incorrect subtraction then award the range on the corrected titres used by the examiner to calculate the mean.			

r =	0.20	0.30	0.50
Mark	3	2	1
Examiner to d = value ✓ 4 _{MAX}	show the ma	arks awardeo r = value ✓ 3	d for accurac

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
1 (b)(i)	Moles MnO ₄ in mean titre = <u>mean titre x 0.0200</u> 1000 Ignore units	Penalise SF once only in (i) and (ii) and allow loss of trailing zeros if correct		1
	Answer to at least 3 SF	arithmetically in (i) and (ii)		

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
1 (b)(ii)	Moles Fe^{2+} = moles MnO ₄ ⁻ in mean titre x 5 in 25.0 cm ³ Ignore units Answer to at least 3 SF			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)(iii)	Moles Fe^{2+} = answer to (b)(ii) x 10 (1) in 250 cm ³ Mass Fe^{2+} in 250 cm ³ = above answer x 55.9 (1) % Fe^{2+} by mass = <u>above answer</u> x 100% Mass of G from Table 1 and to 3 SF only e.g. 14.6 % (1) Ignore units	Use of 56		3

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
1 (c)	Excess / unreacted KMnO ₄			1
[(COIDUIS SOIUTION IN HASK)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (a)	Observations Blue precipitate (1) Insoluble in excess (1) Inference Cu(OH) ₂ /copper(II) hydroxide (1)	[Cu(H ₂ O) ₄ (OH) ₂]		3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(i)	Observations (Goes) brown (1) Ignore any ppt Blue / Black / Blue-black (1) Ignore any ppt		1	3
	Inference Iodine /I ₂ /copper(I) iodide/Cul (1)	Cu ₂ I ₂		

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
2 (b)(ii)	$2Cu^{2+}$ + $4l^- \rightarrow 2Cul / Cu_2l_2$			1
	+ l ₂			
	[Ignore state symbols]			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)(i)	Observation Yellow / green (solution) (1) Inference [CuCl ₄] ²⁻ (1)			2

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
2 (c)(ii)	Ligand exchange / substitution			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (d)	Observations Green precipitate (1) Insoluble in excess (1) Inference Ni(OH) ₂ / nickel hydroxide or Fe(OH) ₂ /iron (II) hydroxide (1)	[Ni(OH) ₂ (H ₂ O) ₄] / [Fe(OH) ₂ (H ₂ O) ₄]	Any Cr compound	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (e)	Observation White precipitate (1) Inference NiSO ₄ (1)	Allow FeSO₄as a cq answer	(Any) green ppte	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (a)	Observation (Orange to) green / blue (1) Inferences Oxidation (1) Primary, secondary alcohol, aldehyde; all three for (1)	Dichromate oxidises	Redox /reduction K is a reducing agent $Cr_2O_7^{2-} \rightarrow 2Cr^{3+}$	3

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
3 (b)	Observation sweet / fruity/ glue smell (1) Inferences ester (1) K is (primary or secondary) alcohol / 'not an aldehyde' if			3
	10110WS 3 mark In (a) (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (c)	Observation (Pale) yellow precipitate (1)			3
	Inferences Iodoform / tri-iodomethane /CHI ₃ (1) CH ₃ CHOH / methyl secondary alcohol (or ethanol) (1)		Any answer including methyl ketone / CH ₃ CO / ethanal	

Question	Correct Answer	Acceptable Answers	Reject	Mark
		Full structural /		1
3 (u)	CH ₃ CH(OH)CH ₂ CH ₃	skeletal formula	—H—O bond	1

3 (c), (d)

If no ppt observed in (c) then may allow 3rd mark in (c) for e.g. 'not methyl secondary alcohol (or ethanol)' then allow butan-1-ol in (d).

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4	 T1 ✓ Candidate's test on all four compounds R1 ✓ Observation and inference from test on all four compounds T2 ✓ Candidate's second test R2 ✓ Observation and inference from second test T3 ✓ Candidate's third test R3 ✓ Observation and inference from third test L ✓ Remaining compound is cyclohexane Tests and observations / inferences which can be done in any order. Each test and observation to maximum (2) 2, 4 – DNP / Brady's reagent Observation + logical deduction Idoform test Observation + logical deduction Fehling's / Tullens/ acidiefied dichromate (VI) Observation + logical deduction Bromine water / solution Observation + logical deduction If identity of compound is assumed then each test (0) but observation (1). Ignore conditions throughout 			7
		1		

Group 2 (6246/01B): this practical test must be taken on the day specified on the official timetable, and is available to Home Centres, International Teaching Institutions and International Centres.

Apparatus and Materials

Apparatus

Each candidate will require:

- 1. seven test tubes in a test tube rack;
- 10 cm³, 25 cm³ or 50 cm³, and 100 cm³ measuring cylinders; 2.
- 3. a supply of dropping pipettes;
- 4. spatula:
- one 100 cm³ beaker; 5.
- access to balance weighing to at least 0.01 g; 6.
- 7. one 250 cm³ beaker;
- one 250 cm³ volumetric flask with stopper; 8.
- 9. funnel to fit volumetric flask:
- 10. glass rod;
- 11. 50.0 cm³ burette, in stand and clamp, with small funnel for filling:
- small beaker for draining burette; 12.
- 13. 25.0 cm³ pipette and safety filler;
- 14. white tile:
- 15. two 250 cm³ conical flasks;
- a supply of hot water (about 70 °C) and a 250 cm³ beaker for a water bath. 16.

Materials

Each candidate will require:

- 200 cm³ of aqueous (potassium manganate(VII), KMnO₄) of concentration 0.0200 mol dm⁻³ $(a)^{*}$ labelled Solution F:
- (b)* Between 8.9 g and 9.1 g of ammonium iron(II) sulphate, (NH₄)₂SO₄.FeSO₄.6H₂O, in a stoppered weighing bottle or similar labelled G. The identity of this compound is not to be disclosed to candidates;
- $(c)^{*}$ 10 cm³ of aqueous copper(II) sulphate of concentration 0.25 mol dm⁻³ labelled **H**. The identity of this solution is **not** to be disclosed to candidates;
- $(d)^{*}$ 10 cm³ of aqueous nickel(II) sulphate of concentration 0.25 mol dm⁻³ labelled J. The identity of this solution is **not** to be disclosed to candidates;
- (e)* 5 cm³ of butan-2-ol labelled K. The identity of this compound is not to be disclosed to candidates;
- (f) 200 cm³ of dilute sulphuric acid; concentration approximately 1.0 mol dm⁻³, labelled dilute sulphuric acid:
- 15 cm³ of dilute sodium hydroxide; concentration approximately 0.5 mol dm⁻³; (g)
- 5 cm³ of dilute sulphuric acid; concentration approximately 1.0 mol dm⁻³; (h)
- 5 cm^3 of dilute hydrochloric acid; concentration approximately 2.0 mol dm⁻³; (i)
- 5 cm^3 of aqueous barium chloride; concentration approximately 0.2 mol dm^{-3} ; (j)
- 5 cm^3 of aqueous potassium iodide; concentration approximately 0.5 mol dm^{-3} ; (k)
- 5 cm³ of aqueous potassium dichromate(VI); concentration approximately 0.20 mol dm⁻³; (1)
- access to a bottle of concentrated hydrochloric acid; (m)
- access to a bottle of concentrated sulphuric acid; (n)
- 1 cm³ of ethanoic acid in a stoppered test tube labelled ethanoic acid: (0)
- 60 cm^3 of aqueous sodium carbonate; concentration approximately 1.0 mol dm⁻³; (p)
- 10 cm³ of iodine/potassium iodide solution made by adding 2 g iodine to 6 g potassium iodide (q) dissolved in 100 cm³ water and labelled aqueous iodine;
- 5 cm³ of freshly prepared aqueous starch; concentration approximately 1%; (r)
- a supply of distilled water. (s)

For home centres (ONLY), the chemicals identified with an asterisk (*) will be sent by a firm of manufacturing chemists.

6246/01C

Question	Correct Answer			Acceptable	Reject	Mark				
	Tahle 1							Allsweis		12
1 (a)	Both weig Weighing	phings red s correct S of Table	corded in ly subtrac e 1]	correct s ted (1)	paces to	o at least 2	dp (1)			
	Table 2									
	Check su necessar	btraction: y.	s and ave	eraging ar	ithmetic	correcting	if			
	All volumes recorded to 0.05 cm^3 (1) Allow one slip but withhold this mark if any readings are in the wrong boxes. Allow 0, 0.0, 0.00 as initial volume. NOT 50 as initial volume. All subtractions completed correctly (1) [$\checkmark \checkmark$ top RHS of Table 2]									
	Mean titr For correct choosing or to 0.05 [✓ by the below]	e ct averag identical cm ³ [unl e mean in	ing of cho titres and ess alrea space or	osen titres l for recor dy penali near the	s, correc ding the sed in T dotted I	tly subtrac mean cor able 2] (1) ine in para	ted or for rect to 2 dp graph			
	 Accuracy If the candidate has made an arithmetical error in Table 2 or in averaging then the examiner must calculate a new average. For an averaging error simply calculate a new value using the candidate's chosen values If a wrongly subtracted titre has been used in the mean then choose any two identical titres or take an average of the closest two. For each candidate calculate Supervisor's mean titre x candidate's mass S = expected titre Supervisor's mass S Calculate the difference(d) between the candidate's mean titre and the expected titre. 				e 2 or in rage. e using the ean then of the cted titre nean titre					
	Award ma	arks for a	ccuracy a	as follows			-			
	d =	±0.30	±0.50	±0.70	±1.00	>1.00	-			
	Mark	4	3	2	1	0]			
	Range The range(r) is the difference between the outermost titres used to calculate the mean. If the examiner has corrected titres because of incorrect subtraction then award the range on the corrected titres used by the examiner to calculate the mean.									
	r =		0.20	0.3	U	0.50	_			
	wark		3	2		1				
	Examiner d = value ✓ 4 _{MAX}	to show	the marks r =	s awarde value 3 _{MAX}	d for acc	curacy and	range as			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)(i)	Moles of Fe ²⁺ salt used = <u>mass S used</u> 392 Ignore units Answer to at least 3 SF	Penalise SF once only in (i) and (ii) and allow loss of trailing zeros if correct arithmetically in (i) and (ii)		1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
1 (b)(ii)	Conc ⁿ Fe ²⁺ salt			1
	= above answer x <u>1000</u> 250			
	Ignore units Answer to at least 3SF			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)(iii)	Moles Fe ²⁺ in 25.0 cm ³ = answer to (b)(ii) x <u>25.0</u> (1) 1000			3
	$= \frac{\text{moles MnO}_4}{5} \text{ in mean titre}$			
	$Conc^{n} MnO_{4}^{-} = moles MnO_{4}^{-}$ in mean titre x <u>1000</u> (1) mean titre			
	Answer to 3 SF only Ignore units			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (c)	Either KMnO ₄ acts as own indicator or excess / unreacted KMnO ₄ colours solution in flask or description of colour change in flask.			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (a)	Observations White precipitate (1) Soluble / dissolves in excess / colourless solution(1)	Goes clear	Zn compounds	4
	Inferences Al(OH) ₃ / [Al(H ₂ O) ₃ (OH) ₃] (1) [Al(OH) ₆] ³⁻ / [Al(OH) ₄] ⁻ (1) 2^{nd} inference mark is conditional on 2^{nd} observation.	$AIO_2^{-}/NaAIO_2 / NaAI(OH)_4 / Na_3AI(OH)_6 Equivalent Pb / Sn species.$		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)	Observation White precipitate (1) Inference AgCl / silver chloride (1)			2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)	AICI ₃		PbCl ₂ Al ₂ Cl ₆	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (d)	Observations Brown precipitate (1) Insoluble in excess (1)	Foxy-red		3
	Inference Fe(OH) ₃ / Iron(III) hydroxide (1)	[Fe(H ₂ O) ₃ (OH) ₃]		

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
2 (e)(i)	Observations Brown / orange / red (solution) (1) Blue / Black / Blue-black (1) Ignore any ppts Inference Iodine / I ₂ / KI ₃ (1)		1	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (e)(ii)	$2Fe^{3+} + 2I^- \longrightarrow 2Fe^{2+} + I_2$ Ignore state symbols			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (f)	FeCl ₃			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (a)	Observation (Orange to) green / blue (1) Inferences Oxidation (1) Primary, secondary alcohol, aldehyde; all three for (1)	Dichromate oxidises	Redox / reduction X is a reducing agent $Cr_2O_7^{2^-} \longrightarrow 2Cr^{3^+}$	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)	Observation effervescence / bubbles (1) Inference carboxylic / COOH / CO ₂ H acid (1)		Gas evolved	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (c)	Observation sweet / fruity / glue smell (1) Inferences ester (1) X is (primary or secondary) alcohol / 'not an aldehyde' if follows 3 rd mark in (a) (1)		Ester smell as observation	3

Question Number	Corre	ect Answer	Acceptable Answers	Reject	Mark
3 (d)	X	CH ₃ CH ₂ OH (1)	Full structural / skeletal formula	—H—O bond	2
	Y	CH₃COOH (1)			

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
4	T1 ✓			7
	Candidate's test on all four			
	compounds			
	R1 ✓			
	Observation and inference from			
	test on all four compounds			
	T2 ✓			
	Candidate's second test			
	R2✓			
	Observation and inference from			
	second test			
	T3 ~			
	Candidate's third test			
	R3 Ý			
	Observation and inference from			
	third test			
	Remaining compound is hexane			
	Tests and observations / inferences			
	which can be done in any order.			
	Each			
	test and observation to maximum (2)			
	• 2, 4 – DNP / Brady's reagent			
	Observation + logical deduction			
	Iodoform test			
	Observation + logical deduction			
	 Fehling's / Tollens/ acidified 			
	dichromate (VI)			
	Observation + logical deduction			
	 NaOH + HNO₃ + Ag ✓ NO₃ 			
	Observation + logical deduction			
	It identity of compound is assumed then			
	each test (0) but observation (1).			
	Ignore conditions throughout.			

Group 3 (6246/01C): this practical test is only available to **International Teaching Institutions** and **International Centres**. The date of this practical test MUST be agreed in advance through submission of Form ES-F8-MJ2009 found in the International Information Manual.

Apparatus and Materials

Apparatus

Each candidate will require:

- 1. five test tubes in a test tube rack;
- 2. 10 cm^3 , 25 cm³ or 50 cm³, and 100 cm³ measuring cylinder;
- 3. a supply of dropping pipettes;
- 4. spatula;
- 5. one 100 cm^3 beaker;
- 6. access to balance weighing to at least 0.01 g;
- 7. one 250 cm^3 beaker;
- 8. one 250 cm³ volumetric flask with stopper;
- 9. funnel to fit volumetric flask;
- 10. glass rod;
- 11. 50.0 cm³ burette, in stand and clamp, with small funnel for filling;
- 12. small beaker for draining burette;
- 13. 25.0 cm^3 pipette and safety filler;
- 14. white tile;
- 15. two 250 cm^3 conical flasks;
- 16. a supply of hot water (about 70 °C) and a 250 cm^3 beaker for a water bath.

Materials

Each candidate will require:

- (a) 200 cm³ of aqueous potassium manganate(VII), KMnO₄, of concentration 0.0200 mol dm⁻³ labelled **Solution R**. The concentration of this solution is **not** to be disclosed to candidates;
- (b) between 8.9 g and 9.1 g of ammonium iron(II) sulphate, (NH₄)₂SO₄.FeSO₄.6H₂O, in a stoppered weighing bottle or similar labelled S;
- (c) 10 cm³ of aqueous aluminium chloride of concentration 0.25 mol dm⁻³ labelled V. The identity of this solution is **not** to be disclosed to candidates;
- (d) 10 cm³ of aqueous iron(III) chloride of concentration 0.25 mol dm⁻³ labelled W. The identity of this solution is **not** to be disclosed to candidates;
- (e) 5 cm^3 of ethanol labelled X. The identity of this compound is **not** to be disclosed to candidates;
- (f) two 2 cm³ portions of ethanoic acid; one in a stoppered boiling tube and one in a stoppered test tube, both labelled Y;
- (g) 200 cm³ of dilute sulphuric acid; concentration approximately 1.0 mol dm⁻³, labelled **dilute** sulphuric acid;
- (h) 15 cm^3 of dilute sodium hydroxide; concentration approximately 1.0 mol dm^{-3} ;
- (i) 5 cm^3 of dilute sulphuric acid; concentration approximately 1.0 mol dm⁻³;
- (j) 5 cm^3 of dilute nitric acid; concentration approximately 2.0 mol dm⁻³;
- (k) 5 cm^3 of aqueous silver nitrate; concentration 0.05 mol dm⁻³;
- (1) 5 cm^3 of aqueous potassium iodide; concentration approximately 0.5 mol dm⁻³;
- (m) 5 cm^3 of aqueous potassium dichromate(VI); concentration approximately 0.20 mol dm⁻³;
- (n) access to a bottle of solid sodium hydrogenearbonate;
- (o) access to a bottle of concentrated sulphuric acid;
- (p) 60 cm^3 of aqueous sodium carbonate; concentration approximately 1.0 mol dm⁻³;
- (q) 5 cm^3 of freshly prepared aqueous starch; concentration approximately 1%;
- (r) a supply of distilled water.

6246/02

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (a)(i)	Cell potential = (+) 0.67(V) (so reaction is feasible) (1)	<i>E</i> ° for I ₂ /I ⁻ larger / more positive than for ascorbic acid Or vice versa	Just 'E is positive'	2
	ratio ascorbic:iodine = 1:1 (1)	Overall correct equation can score second mark		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (a)(ii)	Amount iodate(V) used = 0.02083 dm ³ x 0.01 (mol dm ⁻³) = 2.083 x 10 ⁻⁴ (mol) (1) Ratio IO_3^- : ascorbic acid = 1:3 \therefore amount ascorbic acid = 6.249 x 10 ⁻⁴ (mol) (1) \therefore mass ascorbic acid = 6.249 x 10 ⁻⁴ x 176 (1) consequential on moles = 0.11 g (1) Answer with unit to \ge 2 sf with no rounding errors Correct answer with no working (4) If fail to use correct ratio, penalise 1 mark e.g. 1:1 gives 0.0367 which then scores 3	Mark Cq on their ratio in (a)(i)	0.10	4

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)(i)	First mark Identify hydrogen bond (1) Second mark Either δ^+ H on ascorbic acid attracted to lone pair/to δ^- oxygen atom on water Or δ^+ H on water attracted to lone pair/ δ^- oxygen of OH groups on ascorbic acid (1)			3
	Third mark Many places for hydrogen bonds (in ascorbic acid) (1)		2 places	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)(ii)				1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (a)(i)	$\begin{array}{c} H \\ * C \\ * C \\ * \\ H^{\times} \end{array} \xrightarrow{H} \\ H \\$	All dots or all crosses or any combination		1

Question	Correct Answer	Acceptable Answers	Reject	Mark
2 (a)(ii)	C=C electrophilic (addition) (1)		Substitution	3
	C=O nucleophilic (addition) (1)		Substitution	
	Third mark			
	C=O polar (but C=C not) Or			
	C is δ+ in C=O			
	Or			
	C=C has high electron density (1)			
	NOTE: INITA MARK CAN be awarded			
	mechanism			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)	$R \cdot H \rightarrow RCH_2CH (1)$ $R \cdot H \rightarrow RCH_2CH (1)$ $R CH_2CH H \rightarrow RCH_2CH (1)$ $R CH_2CH H \rightarrow RCH_2CHCH_2CH (1)$ $Note$ $Ignore any use of half arrows$ $Use of full arrows max 1$ $Ignore termination step$	Accept attack on the other carbon in C=C, i.e. the one bearing the cyanide. $\begin{array}{c} H & H & H & H \\ I & I & I & I \\ R^{\bullet} & C = C & \longrightarrow & R \cdot C \cdot C \cdot \\ I & I & I & I \\ CM & H & CM & H \\ \end{array}$ $\begin{array}{c} H & H & H & H & H \\ I & I & I & I \\ R^{\bullet} - C - C & C = C & & R \cdot C - C \cdot \\ I & I & I & I \\ R^{\bullet} - C - C & C = C & & R \cdot C - C \cdot C \cdot \\ I & I & I & I \\ R^{\bullet} - C - C & C = C & & R \cdot C - C \cdot C \cdot \\ I & I & I & I & I \\ CM & H & CM & H & & CM & H \end{array}$	Radical on the cyanide group. This scores zero as the result is not this polymer	2

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
2 (c)(i)	Conditions mark conditional on			2
	correct reagent			
	$LiAIH_4$ (1) in dry ether (1) (followed by			
	acid hydrolysis)			
	OR			
	NaBH4 (1) in water/ alcohol(1)			
	OR			
	hydrogen (1) with platinum/			
	palladium (catalyst) (1)	Ni at 150°C/heat		
	OR			
	sodium (1) in ethanol (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)(ii)	Conditional on reagent in (i) If sodium chosen: no, because reagent too expensive (1) OR If LiAlH ₄ or NaBH ₄ chosen: no, because reagent too expensive (1) OR If H ₂ chosen: yes, because reaction gives no other products / hydrogen is cheap/product is easily separated from the catalyst (1)		Just "batch process"	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)(iii)	(1) for the repeating unit Allow if more than one given (1) for HCI / hydrogen chloride	Amide group may be represented as NHCO etc	hydrochloric acid, HCl(aq)	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (d)	Either: Bonds broken $612 + 360 + 463/ = 1435$ Bonds made $412 + 348 + 743/ = 1503 \Delta H = -68 \text{ kJ}$ mol ⁻¹ (1) Exothermic so reaction will take place/ vinyl alcohol thermodynamically unstable (1) Cq on their values as long as ΔH is negative OR adds up all the bond energies for vinyl alcohol to get 2671 kJ mol ⁻¹ and for ethanal to get 2739 kJ mol ⁻¹ $\Delta H = -68$ k l mol ⁻¹ (1)	-68 with no working scores first mark	Any positive value scores 0 overall Kinetically unstable	2
	Exothermic so reaction will take place/ vinyl alcohol thermodynamically unstable (1)		Kinetically unstable	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (e)	Each mark standalone $\begin{array}{c} CH_{3} \\ H \end{array} \xrightarrow{C} CN \\ CH_{3} \\ H \end{array} \xrightarrow{C} CN \\ H \end{array} \xrightarrow{C} CH_{3} \\ H \\ CN \\ H \\ CN \end{array}$ both curly arrows in 1 st diagram, attack by	curly arrow from O to H ⁺		3
	cyanide, arrow must start from C or -ve charge on C not N and -ve charge must be present somewhere on ion; lone pair not essential. Arrow must start from bond between C and O and point towards the O (1)			
	Intermediate - Ione pair not essential but negative charge is essential (1)			
	Arrow from O (lone pair not needed) or negative charge to HCN or H ⁺ , this can be shown on the diagram of the intermediate (1) If HCN is used the arrow from H-CN bond is required			
	Any other ketone or aldehyde, max (2)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (f)(i)				1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
2 (f)(ii)	Restricted rotation about the C=N/ double bond (1)	No rotation (at rtp) about the C=N/ double bond		2
	N atom has a lone pair of electrons (and another group) (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (f)(iii)	сн, (1) н сн, (1)	90 degree bond angles around the carbon/ nitrogen	180 degree bond angle around nitrogen	1
	Must be the trans / anti			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (a)(i)	Diagram Water drawn V-shaped with H- O-H bond angle marked between 106° and 102°. (1) Shape Explanation V-shape because Either 2 b.p. and 2 l.p. repel as far apart as possible / minimum repulsion / maximum separation or 4 electron pairs repel as far apart as possible / minimum repulsion / maximum	The number of lone pairs can be shown on diagram	4 bond pairs	3
	sep aration (1) Ignore any reference to relative repulsions			
		Bonds polar (could be		
	Polarity (standalone mark) Polar because individual bond	shown on diagram) and molecule is not	Charges don't cancel	
	polarities don't cancel (1)	symmetrical		

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
3 (a)(ii)	EITHER			2
	Polar water molecules attracted to/bond with			
	the ions			
	OR			
	δ^{+} H attracted to anion /			
	δ^{-} O attracted to cation (1)			
	which is an exothermic process which offsets the endothermic lattice energy (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (a)(iii)	$K^{*}(g) \rightarrow Br^{*}(g)$ $-\Delta H_{back}$ $K^{*}(aq) \rightarrow Br^{*}(aq)$ $\Delta H_{back}(Br^{*})$ $\Delta H_{back}(Br^{*})$ $K^{*}(aq) \rightarrow Br^{*}(aq)$ First mark species with state symbols (1) Allow one state symbol omitted ignore aq on left Second mark labelling of lattice and hydration enthalpies (1) numbers or symbols if lattice energy arrow drawn downwards it must be labelled (+) ΔH_{latt} or -670 Third mark Stand alone $\Delta H_{solution} = (+670) + (-322) + (-335)$ $= (+) 13 (kJ mol^{-1}) (1)$	Drawn as energy- level diagram		3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)(i)	2 $[Fe(H_2O)_6]^{2+}$ + $\frac{1}{2}O_2 + 2H^+ \rightarrow$ 2 $[Fe(H_2O)_6]^{3+} + H_2O$ (1)	If use cyanide in equation, +0.87 scores second mark only <i>E</i> ° for third reaction >/more positive than <i>E</i> ° for first		2
	<i>E</i> ° = (+) 0.46(V) so feasible (1)	reaction		

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
3 (b)(ii)	<i>E</i> ° = + 0.87V so	E° for cyano overall reaction		1
	(thermodynamically) is more	>/more positive than E° for		
	favoured (1)	aqua overall reaction		
		so more likely		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (c)(i)	SiCl ₄ + $2H_2O \rightarrow SiO_2 + 4HCI$ (1) Ignore any state symbols	SiCl ₄ + 4H ₂ O → Si(OH) ₄ + 4HCl (1)	Do not allow partial hydrolysis.	1
		Allow SiO ₂ .2H ₂ O		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
Question Number 3 (c)(ii)	Correct Answer Common mark Oxygen lone pair to attack the carbon atom (1) Then If mix and match, mark the 'either' route out of 2 and mark 'or' route out of 2 and award the higher mark Either Carbon has no 2d/energetically available orbitals (1) C-CI bond would have to break first (1)	Acceptable Answers	Reject References to CI ions or CI ⁻ in place of CI atoms max 2 C has no <i>d</i> orbitals CCI₄ has no 2 <i>d</i> orbitals	Mark 3
	OR Chlorine atoms larger than carbon atoms (1) (Water) sterically hindered from attacking (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (d)	Chloride ions deprotonate water (which has been polarised by magnesium ions) (1) residue is MgO /magnesium oxide/Mg(OH) ₂ /magnesium hydroxide (1) STAND ALONE	MgCl ₂ is hydrolysed by water (of crystallisation)		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (e)	Same amount of each halogenoalkane (1) Ignore references about adding alcohol Add AgNO ₃ solution (1) Ignore references to nitric acid	Same volume	Lose second and third marks if NaOH added	3
	first (1)		ppt.	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(i)	Mass of acid in 1dm ³ concentrated acid = 0.98 x 1800 g = 1764 (g) (1) Concentration of acid = 1764g ÷ 98 g mol ⁻¹ = 18 (mol dm ⁻³) (1) Correct answer with no working scores 2	Allow 1 mark for 1800 divided by 98 = 18.37		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(ii)	First ionisation of sulphuric acid is complete (1) This suppresses second ionisation (therefore $[H_3O^+]$ is very similar to that in HCl so pH very similar) (1)			2

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
4 (b)(i)	$H_2SO_4 + NaCI \rightarrow NaHSO_4 + HCI$	$H_2SO_4 + 2NaCI \rightarrow$		1
	(1)	$Na_2SO_4 + 2HCI$		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)(ii)	First mark: Trend Cl ⁻ < Br ⁻ < l ⁻ (or names) (1) stand alone	Equivalent explanation based on I ⁻ > Br ⁻ > CI ⁻	CI < Br < I, or the names of the halogens. Decreases scores 0	3
	Second mark: evidence to support first mark Either using numbers I ⁻ reduces the S in SO ₄ ²⁻ to the lowest o.s. of all whereas Br ⁻ only to +4 and Cl ⁻ not at all Or using amount of change I ⁻ lowers the oxidation number of sulphur the most (1)	from 6 → 0 or -2	overall.	
	Third mark: Either I [−] is the largest of the ions and loses electrons most easily/attraction for outer electron is weakest Or CI [−] is the smallest of the ions and so attraction for outer electron is strongest (1)		Just "lodide reduces the sulphuric acid more"	

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
4 (c)(i)	Either			2
	(Moist) red phosphorus (1)		Just "phosphorus"	
	iodine (1)			
	Or			
	phosphoric acid (1)	phosphoric(V) acid, orthophosphoric acid.	Sulphuric acid and KI/Nal scores 0	
	potassium/sodium iodide (1)			

Question	Correct Answer	Acceptable Answers	Reject	Mark
4 (c)(ii)	If phosphorus + iodine or no answer in (i) Pl ₃ Or If phosphoric acid used or no answer in (i) HI (1)	PI ₅	Pl₃ from any other source. HI from any other source	1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
4 (d)(i)	(It is unbranched because)			1
	Either			
	m/e 29 is caused by the ion			
	CH ₃ CH ₂ ⁺ / C ₂ H ₅ ⁺ charge essential			
	Or			
	m/e 29 means the molecule has			
	$a C_2H_5$ group (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (d)(ii)	Bromo (no mark for this alone) Either molecular ion has <i>m/e</i> 136 and/or 138 Or molecular ion peaks are two units apart (1) two peaks of same size (differing by 2 mass units which fits the 50/50 isotopic composition of bromine) (1)	Argument that it cannot be chloro or iodo on basis of <i>m/e</i> of molecular ion (1) and some isotopic justification (1)	Just "peak at 136 and/or 138"	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (e)(i)	KOH in ethanol (both needed) / ethanolic KOH (1)	"NaOH" for "KOH"		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4(e)(ii)	$H \xrightarrow{H} H \xrightarrow{H} \xrightarrow{H}$			3
	Both arrows in step 1 (1) intermediate structure (1) arrow from bromide ion (1) Lone pair on Br ⁻ is not required Wrong alkene max 2.	Arrow from negative charge		

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
4 (e)(iii)	(Formation of 2- isomer is via) a secondary carbocation (1)	Allow carbocation with more alkyl groups	Any argument based on stability of product	2
	which is more stable (than the primary carbocation) (1)	-	Explanation in terms of Markovnikov's rule	

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publications@linneydirect.com</u> Order Code UA021185 Summer 2009

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH