Mark Scheme (Results)

Summer 2007

GCE

GCE Chemistry (6244) Paper 01

General Guidance on Marking

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge.

Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the mark scheme
The mark scheme gives you:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

1 / means that the responses are alternatives and either answer should receive full credit.
2 () means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
3 [] words inside square brackets are instructions or guidance for examiners.
4 Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
$5 \mathrm{ecf} / \mathrm{TE} / \mathrm{cq}$ (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

	EXPECTED ANSWER			ACCEPT	REJ ECT	MARK
1.	(a)	(i)	$\mathrm{Mg}^{2+}(\mathrm{g})(+) \mathrm{O}^{2}(\mathrm{~g})$		if state symbols missing If $2 \mathrm{e}^{-}$included in box	(1)
		(ii)	ΔH_{1} (Enthalpy of) formation (of MgO) (1) ΔH_{2} (Enthalpy of) atomisation (of Mg) (1) ΔH_{3} $1^{\text {st }}$ plus $2^{\text {nd }}$ electron affinity (of O) OR $1^{\text {st }}$ and $2^{\text {nd }}$ electron affinity (of O$)$ (1)	Recognisable abbreviation such as "EA" for electron affinity.		(3)
		(iii)	$\Delta H_{f}=-602=(+150)+(+2186)+(+249)+(+657)+L E$ OR $\begin{aligned} & (\mathrm{LE}=)-(+657)-(+249)-(+2186)-(+150)+(-602)(\mathbf{1}) \\ & (\mathrm{LE}=)-3844\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)(\mathbf{1}) \end{aligned}$ Correct answer only with no working (1 max)		Doubling electron affinity and/or atomisation values scores (0) any incorrect sign in algebraic expression (0)	(2)

	EXPECTED ANSWER		ACCEPT	REJ ECT	MARK
2.	(a)	V: (1) w:		Any compressed formulae e.g. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}$ $\mathrm{OR} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}$ Any compressed formulae e.g. $\mathrm{CH}_{3} \mathrm{CONH}_{2}$ OR	(2)

	EXPECTED ANSWER		ACCEPT	REJ ECT	MARK
	(b)	Bromocresol green Indicator(s) CQ on graph [check table on question paper]	More than one indicator for extended vertical regions	(1)	
	(c)pH change around equivalence point too small OR pH changes over too big a volume (1)	Too small a vertical (region) OR no vertical (region) OR no point of inflexion OR no sudden change in pH OR no straight section No sharp/clear/precise end point OR very small range over which indicator changes colour	No suitable indicator OR No "easy" colour change	(2)	

	EXPECTED ANSWER		ACCEPT	REJ ECT	MARK
(d)	(i)	(as reaction) endothermic (1) K_{c} decreases (1) numerator in quotient (has to) decrease OR denominator in quotient (has to) increase OR fraction (has to) decrease (1) yield of $\mathrm{HCOOC}_{2} \mathrm{H}_{5}$ decreases (1)	Exothermic in backward direction (or words to that effect) If state exothermic in forward direction, 1 mark only (out of 4) for CQ "increase in K_{c} "		(4)
	(ii)	no effect as catalysts do not affect (the value of) K OR no effect as catalysts do not affect the position of equilibrium OR no effect as catalysts do not affect the yield OR No effect as catalysts increase the rate of the forward and backward reactions equally/to the same extent OR no effect as catalysts only increase the rate OR no effect as catalysts only alter the rate "no effect" can be stated or implied IGNORE any references to activation energy		Just "catalysts increase rate"	(1)
					13 mar

	EXPECTED ANSWER			ACCEPT	REJ ECT	MARK
5.	IGNORE state symbols throughout this question.					
	(a)	(i)	$\mathrm{Na}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}$	$. . \rightarrow 2 \mathrm{Na}^{+} \mathrm{OH}$ OR $. . \rightarrow 2 \mathrm{Na}^{+}+2 \mathrm{OH}^{-}$ Multiples e.g. $2 \mathrm{Na}_{2} \mathrm{O}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{NaOH}$		(1)
		(ii)	ionic	Giant ionic OR electrovalent		(1)
	(b)	(i)	$\begin{aligned} & \mathrm{P}_{4} \mathrm{O}_{10}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{4} \\ & \mathrm{OR} \\ & \mathrm{P}_{2} \mathrm{O}_{5}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{3} \mathrm{PO}_{4} \end{aligned}$	Multiples		(1)
		(ii)	covalent	'molecular covalent' 'simple covalent'	'convalent' OR 'giant covalent' OR dative covalent	(1)
	(c)	basic (oxides) to acidic (oxides) (1) both words needed IGNORE references to $\mathrm{Al}_{2} \mathrm{O}_{3}$ IGNORE references to amphoteric character of $\mathrm{Al}_{2} \mathrm{O}_{3}$ metallic character (of the elements) decreases (1) IGNORE "across group" if used instead of "across period"		metal to non-metal	The elements change from basic to acidic	(2)

	EXPECTED ANSWER		ACCEPT	REJ ECT	MARK
(d)	(i)	$\begin{aligned} & \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-} \\ & \mathrm{OR} \\ & \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}++\mathrm{HCO}_{3}^{-} \end{aligned}$	$\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons 2 \mathrm{H}^{+}+\mathrm{CO}_{3}{ }^{2-}$ OR $\begin{aligned} & \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3} \rightleftharpoons \mathrm{H}^{+}+ \\ & \mathrm{HCO}_{3}^{-} \end{aligned}$ OR $\begin{aligned} & \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3} \rightleftharpoons 2 \mathrm{H}^{+}+ \\ & \mathrm{CO}_{3}^{2-} \end{aligned}$ " \rightarrow " instead of " \rightleftharpoons "	JUST $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3}$	(1)
	(ii)	$\mathrm{PbO}+2 \mathrm{H}^{+} \rightarrow \mathrm{Pb}^{2+}+\mathrm{H}_{2} \mathrm{O}$ OR $\begin{equation*} \mathrm{PbO}+2 \mathrm{HNO}_{3} \rightarrow \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O} \tag{1} \end{equation*}$ $\mathrm{PbO}+2 \mathrm{OH}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{~Pb}(\mathrm{OH})_{4}{ }^{2^{-}}$ OR $\mathrm{PbO}+2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Na}_{2} \mathrm{~Pb}(\mathrm{OH})_{4}$ OR $\begin{equation*} \mathrm{PbO}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{PbO}_{2}+\mathrm{H}_{2} \mathrm{O} \tag{1} \end{equation*}$	formation of $\mathrm{Pb}(\mathrm{OH})_{6}{ }^{4}$ OR $\mathrm{Na}_{4} \mathrm{~Pb}(\mathrm{OH})_{6}$	PbO with other acids Any equations with PbO_{2}	(2)

	EXPECTED ANSWER			ACCEPT	REJ ECT	MARK
6.	(a)	(i)	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ (1) Reduction OR nucleophilic addition (1) IGNORE heterolytic	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OH}$ OR full structural formula e.g. OR Redox "Nucleophilic reduction"	$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$	(2)

		EXPECTED ANSWER	ACCEPT	REJ ECT	MARK
	(ii)	 (1) oxidation OR redox (1)	 OR $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$ OR $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$ OR $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}$ OR $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}$ $\mathrm{C}_{2} \mathrm{H}_{5}$ instead of $\mathrm{CH}_{3} \mathrm{CH}_{2}$ OR full structural formula e.g. OR "oxidisation"	 OR	(2)

	EXPECTED ANSWER		ACCEPT	REJ ECT	MARK
	(iii)	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{C} \equiv \mathrm{~N}$ (1) nucleophilic addition (1) both words needed IGNORE "heterolytic"	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CH}(\mathrm{OH}) \mathrm{CN}$ OR $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CN}$ OR full structural formula e.g. OR		(2)
(b)	(i)	$\mathrm{Mg}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{MgBr}$ IGNORE charges		$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{BrMg}$ $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Mgl}$	(1)
	(ii)	Dry ethoxyethane OR dry ether IGNORE references to I_{2} OR heat			(1)

	EXPECTED ANSWER		ACCEPT	REJ ECT	MARK
		With butanal: Structure: $\begin{equation*} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}_{3} \tag{1} \end{equation*}$ Name: hexan-3-ol (1)	the full structural formula e.g. OR CQ structure provided it is a secondary alcohol hexane-3-ol CQ name provided that it is a secondary alcohol	$\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{OH}$	(2)
	(ii)	 (group in butanal) is planar (1) attacked (with equal probability) from two directions (1) Mark each aspect independently unless reference made to carbocations etc		Butanal/the molecule/it is planar OR Butanal/the molecule/it is linear References to carbocations OR carbonium ions OR Planar intermediates OR $\mathrm{S}_{\mathrm{N}} 1$ mechanisms scores ($\mathbf{0}$ out of 2)	(2)
					mark

