

## Mark Scheme (Results) Summer 2007

GCE

GCE Chemistry (6244) Paper 01

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH



## General Guidance on Marking

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge.

Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the mark scheme

The mark scheme gives you:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

- 1 / means that the responses are alternatives and either answer should receive full credit.
- 2 ( ) means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
- 3 [] words inside square brackets are instructions or guidance for examiners.
- 4 Phrases/words in bold indicate that the <u>meaning</u> of the phrase or the actual word is essential to the answer.
- 5 ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

## 6244/01

|    | EXPECTED ANSWER |       | EXPECTED ANSWER                                                                                                                                                                                                                                                                                                                                        | ACCEPT                                                              | REJECT                                                                                                                  | MARK |
|----|-----------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------|
| 1. | (a)             | (i)   | $Mg^{2+}(g)$ (+) $O^{2-}(g)$                                                                                                                                                                                                                                                                                                                           |                                                                     | if state symbols missing<br>If 2e⁻ included in box                                                                      | (1)  |
|    |                 | (ii)  | $\Delta H_1  (\text{Enthalpy of}) \text{ formation (of MgO)} \qquad (1)$<br>$\Delta H_2  (\text{Enthalpy of}) \text{ atomisation (of Mg)} \qquad (1)$<br>$\Delta H_3  1^{\text{st}} \text{ plus } 2^{\text{nd}} \text{ electron affinity (of O)}$<br>$\text{OR } 1^{\text{st}} \text{ and } 2^{\text{nd}} \text{ electron affinity (of O)} \qquad (1)$ | Recognisable abbreviation<br>such as "EA" for electron<br>affinity. |                                                                                                                         | (3)  |
|    |                 | (iii) | $\Delta H_{f} = -602 = (+150) + (+2186) + (+249) + (+657) + LE$ OR (LE =) -(+657)-(+249)-(+2186)-(+150)+(-602)(1) (LE =) -3844 (kJ mol <sup>-1</sup> ) (1) Correct answer only with no working (1 max)                                                                                                                                                 |                                                                     | Doubling electron affinity and/or<br>atomisation values scores (0)<br>any incorrect sign in algebraic<br>expression (0) | (2)  |

|     |       | EXPECTED ANSWER                                                         | ACCEPT                                                                                                                                           | REJECT                                                                                                                                                                                                             | MARK |
|-----|-------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| (b) | (i)   | The electrons around the iodide ion are drawn towards the magnesium ion | (Mg <sup>2+</sup> ) polarises (I <sup>-</sup> ion)<br>"distortion" if clearly linked<br>to the iodide ion<br>"Mg ion"<br>"I ion" OR "iodine ion" | Any reference to atoms or<br>molecules<br>e.g. "Mg polarises"<br>"iodine/I/I <sub>2</sub> is polarised"<br>Wrong polarisation e.g.<br>"magnesium ion is polarised"<br>"I <sup>-</sup> polarises Mg <sup>2+</sup> " | (1)  |
|     | (ii)  | Radius/size (of ions) (1)<br>charge (on ions) (1)                       | Distance between ions<br>OR Sum of (ionic) radii<br>OR Type of crystal structure<br>OR Madelung constant<br>"Charge density"                     | "atomic radius"                                                                                                                                                                                                    | (2)  |
|     | (iii) | Less (exothermic) (1)<br>covalent character (strengthens lattice) (1)   | Smaller<br>OR more endothermic<br>OR Less negative<br>OR Lower<br>Theoretical value based on<br>purely/100 % ionic model                         | Higher/greater<br>Any implication of magnesium<br>iodide being totally covalent                                                                                                                                    | (2)  |
|     |       | Mark each aspect independently                                          |                                                                                                                                                  |                                                                                                                                                                                                                    |      |

|     |     | EXPECTED ANSWER                                                           | ACCEPT                                                                                                                       | REJECT                                                               | MARK |
|-----|-----|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------|
| (c) | (i) | Enthalpy change when 1 mol of gaseous ions (1)                            | Energy or heat                                                                                                               | Any implication of an<br>endothermic process<br>e.g. energy required |      |
|     |     | is dissolved such that further dilution causes no further heat change (1) |                                                                                                                              | "1 mol of gaseous atoms"                                             |      |
|     |     | IGNORE "standard conditions"<br>Mark each aspect independently            | "Added to water"/"reacts<br>with water" instead of<br>"dissolved"                                                            | Just "hydrated"<br>Just "completely hydrated"                        |      |
|     |     |                                                                           | Is dissolved to form an<br>infinitely dilute solution<br>OR<br>Is dissolved in a<br>large/excess/infinite<br>amount of water |                                                                      | (2)  |

|      | EXPECTED ANSWER                                                                                                                                                                                                                                       | ACCEPT                                   | REJECT                                                                                                             | MARK         |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------|
| (ii) | <b>EITHER</b><br>$\Delta H_{SOLN} = (-\Delta H_{LE} + \Delta H_{HYD})$ (1)<br>Expression quoted or correctly used in at least one of the calculations below                                                                                           |                                          |                                                                                                                    |              |
|      | $\Delta H_{SOLN} MgSO_4 = -(-2874) + (-1920)$<br>= +954(kJ mol <sup>-1</sup> ) (1)                                                                                                                                                                    | Answer only with no working (1)          |                                                                                                                    |              |
|      | $\Delta H_{SOLN} BaSO_4 = -(-2374) + (-1360)$<br>= +1014(kJ mol <sup>-1</sup> ) (1)                                                                                                                                                                   | Answer only with no working (1)          |                                                                                                                    |              |
|      | Enthalpy of solution of MgSO <sub>4</sub> less endothermic/more<br>exothermic/more negative than for BaSO <sub>4</sub> , so MgSO <sub>4</sub><br>more soluble than BaSO <sub>4</sub> (or reverse argument) (1)                                        |                                          | Just "solubility/Δ <i>H</i> <sub>soln</sub> depends<br>on a balance between lattice and<br>hydration energies"     |              |
|      | (both) lattice energies and hydration enthalpies decrease from $MgSO_4$ to $BaSO_4$ (or down group) (1)                                                                                                                                               |                                          |                                                                                                                    | (4)          |
|      | (but) lattice energies change less (1)                                                                                                                                                                                                                | "The hydration energies decrease faster" | (-)500 and (-)560 stated without further explanation                                                               |              |
|      | $\Delta H_{SOLN} = (-\Delta H_{LE} + \Delta H_{HYD})$ (1) stated in words or symbols                                                                                                                                                                  |                                          |                                                                                                                    |              |
|      | so $\Delta H_{soln}$ less exothermic/more endothermic/more<br>positive for BaSO <sub>4</sub> so less soluble<br>OR so $\Delta H_{soln}$ more exothermic/more negative/less<br>endothermic for MgSO <sub>4</sub> so MgSO <sub>4</sub> more soluble (1) |                                          | Just "solubility/Δ <i>H</i> <sub>solution</sub> depends<br>on a balance between lattice and<br>hydration energies" |              |
|      |                                                                                                                                                                                                                                                       |                                          | (Tot                                                                                                               | al 17 marks) |

|    |     | EXPECTED ANSWER                            | ACCEPT | REJECT                                                                                                      | MARK |
|----|-----|--------------------------------------------|--------|-------------------------------------------------------------------------------------------------------------|------|
| 2. | (a) | V: $H$ H H H H H H H H H H H H H H H H H H |        | Any compressed formulae e.g.<br>C₂H₅Br<br>OR CH₃CH₂Br                                                       |      |
|    |     |                                            |        | Any compressed formulae e.g.<br>CH <sub>3</sub> CONH <sub>2</sub><br>OR<br>CH <sub>3</sub> CNH <sub>2</sub> | (2)  |

|     | EXPECTED ANSWER                                                                                                                                           | ACCEPT                                                                                                                                                                                                                                                                                                             | REJECT                                                                                                                      | MARK |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------|
| (b) | Accept names or formulae, but ignore correct or<br>incorrect conditions<br>Step A: NH <sub>3</sub> (1)<br>Ignore state or dilution or solvent for ammonia |                                                                                                                                                                                                                                                                                                                    |                                                                                                                             |      |
|     | Step B: $K_2Cr_2O_7$ (1) and $H_2SO_4$ (1)                                                                                                                | "Hydrochloric acid"/"HCl" instead<br>of "H2SO4"                                                                                                                                                                                                                                                                    | Incorrect oxidation number<br>for dichromate(VI)                                                                            |      |
|     | N.B. only award the acid/H <sub>2</sub> SO <sub>4</sub> mark if a correct (or a near-miss) oxidising agent given                                          | $Cr_2O_7^{2-}$ and $H^+$ (2)<br>OR<br>$CrO_4^{2-}$ and $H^+$ (2)<br>OR<br>Acidified dichromate ions (2)<br>OR<br>Acidified $K_2Cr_2O_7$ (2)<br>OR<br>acidified dichromate((VI)) (1)<br>OR<br>KMnO <sub>4</sub> (1) and $H_2SO_4$ (1)<br>OR<br>alkaline KMnO <sub>4</sub> (1)<br>then acidify (accept any acid) (1) | CrO₄ <sup>2-</sup> alone (0)<br>Hydrochloric acid/HCl with<br>KMnO₄ (0)<br>Incorrect oxidation number<br>for manganate(VII) | (6)  |
|     | Step C: $PCl_5$ OR $SOCl_2$ OR $PCl_3$ (1)                                                                                                                |                                                                                                                                                                                                                                                                                                                    |                                                                                                                             |      |
|     | Step D: $P_2O_5$ OR $P_4O_{10}$ (1)                                                                                                                       |                                                                                                                                                                                                                                                                                                                    |                                                                                                                             |      |
|     | Step E: LiAlH₄ (1)                                                                                                                                        | C₂H₅OH and Na<br>OR H₂ and Ni /Pt/Pd (catalyst)<br>OR Lithal                                                                                                                                                                                                                                                       | NaBH₄ (O)                                                                                                                   |      |

|     | EXPECTED ANSWER                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ACCEPT                                                                                 | REJECT             | MARK             |
|-----|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------|------------------|
| (c) | (i)                                                       | (substituted) amide<br>OR (N-substituted) amide<br>OR secondary amide<br>OR 2° amide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                        | Polyamide<br>amine | (1)              |
|     | (ii)                                                      | $\begin{array}{c c} & H & 0 & 0 \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$ |                                                                                        | – CONH             | (2)              |
| (d) | Loss                                                      | of smell:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HCl as a reactant and                                                                  |                    |                  |
|     | CH <sub>3</sub>                                           | $CH_2NH_2 + H^+ \rightarrow CH_3CH_2NH_3^+$ (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $CH_3CH_2NH_3^+Cl^-$ as product                                                        |                    |                  |
|     |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (charges are not required).                                                            |                    |                  |
|     | Retu<br><i>CH</i> <sub>3</sub><br>OR<br>CH <sub>3</sub> C | urn of smell:<br>$CH_2NH_3^+ + OH^- \rightarrow CH_3CH_2NH_2 + H_2O$<br>$CH_2NH_3Cl + NaOH \rightarrow CH_3CH_2NH_2 + H_2O + NaCl (1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $CH_{3}CH_{2}NH_{3}^{+} + NaOH \rightarrow$ $CH_{3}CH_{2}NH_{2} + H_{2}O + Na^{+} (1)$ |                    | (2)              |
|     |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                        |                    | (Total 13 marks) |

|    |     | EXPECTED ANSWER                                                                                                                                                                                                | ACCEPT | REJECT          | MARK |
|----|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------|------|
| 3. | (a) | PH 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                      | ACCEPT | pH range 3 to 5 | (4)  |
|    |     | <ul> <li>e.g. pH range 3 to 6 OR 3 to 7 OR 3 to 8 OR 4 to 7<br/>OR 4 to 8 OR 5 to 8 (1)<br/>(do not need to start/finish on whole numbers)</li> <li>Middle of vertical pH range between 4 and 6 (1)</li> </ul> |        | ph range 5 to 5 |      |

|     | EXPECTED ANSWER                                                                            | ACCEPT                                                                                                                                      | REJECT                                                 | MARK         |
|-----|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------|
| (b) | Bromocresol green<br>Indicator(s) CQ on graph [check table on question paper]              | More than one indicator for extended vertical regions                                                                                       |                                                        | (1)          |
| (c) | pH change around equivalence point too small<br>OR pH changes over too big a volume (1)    | Too small a vertical (region)<br>OR no vertical (region)<br>OR no point of inflexion<br>OR no sudden change in pH<br>OR no straight section |                                                        |              |
|     | for a sharp colour change of indicator (1)                                                 | No sharp/clear/precise end point<br>OR very small range over which<br>indicator changes colour                                              | No suitable indicator<br>OR No "easy" colour<br>change | (2)          |
|     | [If say ammonia is a strong base or ethanoic acid is a strong acid, or both, (0 out of 2)] |                                                                                                                                             |                                                        |              |
|     |                                                                                            |                                                                                                                                             | (То                                                    | tal 7 marks) |

|    |     |       | EXPECTED ANSWER                                                                                                                                                                                                                                                                                                                                                                                                             | ACCEPT                                                                                                                                                                                                                                                                                                                                                   | REJECT                                                 | MARK |
|----|-----|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------|
| 4. | (a) | Н     |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                          |                                                        | (1)  |
|    | (b) | este  | r                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                          |                                                        | (1)  |
|    | (C) | (i)   | Moles: C <sub>2</sub> H <sub>5</sub> OH: 3.75 (1)<br>Moles: HCOOC <sub>2</sub> H <sub>5</sub> : 2.50 and moles H <sub>2</sub> O : 2.50 (1) for both                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                          |                                                        | (2)  |
|    |     | (ii)  | $K_{c} = \frac{[HCOOC_{2}H_{5}][H_{2}O]}{[HCOOH][C_{2}H_{5}OH]}$                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                          | Obviously round<br>brackets "()"                       | (1)  |
|    |     | (iii) | $K_{c} = \frac{2.50}{0.485} \times \frac{2.50}{0.485}$<br>Must have clearly divided moles of each component by<br>0.485 for 1 <sup>st</sup> mark e.g.<br>[HCOOC <sub>2</sub> H <sub>5</sub> ] = [H <sub>2</sub> O] = 5.16 (mol dm <sup>-3</sup> )<br>and [HCOOH] = 1.03 (mol dm <sup>-3</sup> )<br>and [C <sub>2</sub> H <sub>5</sub> OH] = 7.73 (mol dm <sup>-3</sup> )<br>= 3.33 (1) stand alone mark<br>IGNORE sig.figs. | $K_{c} = \frac{(2.50)^{2}}{0.50 \times 3.75} = 3.33 \text{ only scores}$ (2) if it is stated that V cancels<br>either here or in (iv)<br>If $[H_{2}O]$ omitted in (ii), then<br>answer<br>$K_{c} = 0.647 \text{ mol}^{-1}\text{dm}^{3}$<br>(2) but this will give<br>$K_{c} = 1.33 \text{ mol}^{-1}\text{dm}^{3}$ with V<br>omitted from calculation (1) | 1 <sup>st</sup> mark if 485 used<br>as V in expression | (2)  |
|    |     | (iv)  | No, (as) equal numbers of moles on both sides<br>OR volumes cancel<br>OR mol dm <sup>-3</sup> cancel<br>OR units cancel<br>OR crossing out units to show they cancel                                                                                                                                                                                                                                                        | <ul> <li>"equal powers/moles on both sides"</li> <li>OR " powers cancel"</li> <li>Mark CQ on K<sub>c</sub> expression in (ii)</li> </ul>                                                                                                                                                                                                                 | "concentrations<br>cancel"                             | (1)  |

|     |      | EXPECTED ANSWER                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ACCEPT                                                                    | REJECT                            | MARK           |
|-----|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------|----------------|
| (d) | (i)  | (as reaction) endothermic (1)<br>K <sub>e</sub> decreases (1)                                                                                                                                                                                                                                                                                                                                                                                                       | Exothermic in backward<br>direction (or words to that<br>effect)          |                                   |                |
|     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | direction, 1 mark only (out of<br>4) for CQ "increase in K <sub>c</sub> " |                                   | (4)            |
|     |      | numerator in quotient (has to) decrease<br>OR denominator in quotient (has to) increase<br>OR fraction (has to) decrease (1)                                                                                                                                                                                                                                                                                                                                        |                                                                           |                                   |                |
|     |      | yield of $HCOOC_2H_5$ decreases (1)                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                           |                                   |                |
|     | (ii) | no effect as catalysts do not affect (the value of) K<br>OR<br>no effect as catalysts do not affect the position of<br>equilibrium<br>OR<br>no effect as catalysts do not affect the yield<br>OR<br>No effect as catalysts increase the rate of the forward and<br>backward reactions equally/to the same extent<br>OR<br>no effect as catalysts only increase the rate<br>OR<br>no effect as catalysts only alter the rate<br>"no effect" can be stated or implied |                                                                           | Just "catalysts<br>increase rate" | (1)            |
|     |      | IGNORE any references to activation energy                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                           |                                   |                |
|     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                           | Т) (Т                             | otal 13 marks) |

|    |      |                      | EXPECTED ANSWER                                                                                                                        | ACCEPT                                                                                                     | REJECT                                                            | MARK |
|----|------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------|
| 5. | IGNO | ORE st               | ate symbols throughout this question.                                                                                                  |                                                                                                            |                                                                   |      |
|    | (a)  | (i)                  | $Na_2O + H_2O \rightarrow 2NaOH$                                                                                                       | $ \rightarrow 2Na^+OH^-$ OR $ \rightarrow 2Na^+ + 2OH^-$ Multiples e.g. $2Na_2O + 2H_2O \rightarrow 4NaOH$ |                                                                   | (1)  |
|    |      | (ii)                 | ionic                                                                                                                                  | Giant ionic<br>OR electrovalent                                                                            |                                                                   | (1)  |
|    | (b)  | (i)                  | $P_4O_{10} + 6H_2O \rightarrow 4H_3PO_4$ OR $P_2O_5 + 3H_2O \rightarrow 2H_3PO_4$                                                      | Multiples                                                                                                  |                                                                   | (1)  |
|    |      | (ii)                 | covalent                                                                                                                               | 'molecular covalent'<br>'simple covalent'                                                                  | 'co <u>n</u> valent'<br>OR 'giant covalent'<br>OR dative covalent | (1)  |
|    | (C)  | basi<br>IGN(<br>IGN( | c (oxides) to acidic (oxides) (1) both words needed DRE references to $Al_2O_3$<br>DRE references to amphoteric character of $Al_2O_3$ |                                                                                                            | The elements change from basic to acidic                          | (2)  |
|    |      | met.                 | allic character (of the elements) decreases (1)<br>DRE "across group" if used instead of "across period"                               | metal to non-metal                                                                                         |                                                                   |      |

| EXPECTED ANSWER |      | EXPECTED ANSWER                                                                                                                                                                                                                                                                | ACCEPT                                                                                                                                                                                               | REJECT                                                                           | MARK |
|-----------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------|
| (d)             | (i)  | $CO_2 + H_2O \rightleftharpoons H^+ + HCO_3^-$<br>OR<br>$CO_2 + 2H_2O \rightleftharpoons H_3O + + HCO_3^-$                                                                                                                                                                     | $CO_{2} + H_{2}O = 2H^{+} + CO_{3}^{2}$ $OR$ $CO_{2} + H_{2}O = H_{2}CO_{3} = H^{+} + HCO_{3}^{-}$ $OR$ $CO_{2} + H_{2}O = H_{2}CO_{3} = 2H^{+} + CO_{3}^{2}$ $"\rightarrow" \text{ instead of "="}$ | $\begin{array}{l} JUST\\ CO_2 + H_2O \ \rightleftharpoons \ H_2CO_3 \end{array}$ | (1)  |
|                 | (ii) | $PbO + 2H^{+} \rightarrow Pb^{2+} + H_{2}O$ OR $PbO + 2HNO_{3} \rightarrow Pb(NO_{3})_{2} + H_{2}O$ (1) $PbO + 2OH^{-} + H_{2}O \rightarrow Pb(OH)_{4}^{2^{-}}$ OR $PbO + 2NaOH + H_{2}O \rightarrow Na_{2}Pb(OH)_{4}$ OR $PbO + 2NaOH \rightarrow Na_{2}PbO_{2} + H_{2}O$ (1) | formation of $Pb(OH)_6^{4^-}$<br>OR $Na_4Pb(OH)_6$                                                                                                                                                   | PbO with other acids<br>Any equations with<br>PbO <sub>2</sub>                   | (2)  |

| EXPECTED ANSWER |                                       | EXPECTED ANSWER                                                                                                                                                                                   | ACCEPT                                                                                                                                    | REJECT                                                                                             | MARK         |
|-----------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------|
| (e)             | Incre                                 | eases as                                                                                                                                                                                          |                                                                                                                                           | Just "increases" on its<br>own (0)<br>OR "increases"<br>followed by incorrect<br>justification (0) |              |
|                 | <u>EITH</u><br>oxid<br>ampl<br>[amp   | I <u>ER</u><br>es acidic at the top of the group (1)<br>hoteric at bottom of group (1)<br>photeric must be stated for the 2 <sup>nd</sup> mark]                                                   | Oxides more basic down group 1 (out of 2)<br>OR oxides less acidic down group 1 (out of 2)                                                |                                                                                                    |              |
|                 | <u>OR</u><br>atom                     | ns become larger (1)                                                                                                                                                                              | atoms have more shielding/shells/energy levels<br>OR "(outer) electrons further from nucleus"<br>[no need to refer to atoms in this case] | Just "more electrons"<br>OR "the elements<br>become larger"                                        | (2)          |
|                 | (so)<br>OR h<br>OR m<br>[allo<br>made | more easily lose electrons<br>have lower ionisation energies<br>hore easily form positive ions (in compounds) (1)<br>w 2 <sup>nd</sup> mark even if no specific reference has been<br>e to atoms] |                                                                                                                                           |                                                                                                    |              |
|                 | [N.B.<br>EITH                         | . Marking cannot allow points taken from both the<br>ER and OR arguments together]                                                                                                                |                                                                                                                                           |                                                                                                    |              |
|                 |                                       |                                                                                                                                                                                                   |                                                                                                                                           | (Tota                                                                                              | i i i marks) |

|    | EXPECTED ANSWER |     | EXPECTED ANSWER                                                 | ACCEPT                                                        | REJECT                           | MARK |
|----|-----------------|-----|-----------------------------------------------------------------|---------------------------------------------------------------|----------------------------------|------|
| 6. | (a)             | (i) | $CH_3CH_2CH_2OH$ (1)                                            | $C_2H_5CH_2OH$ OR full structural formulae.g. $H$ $H$ $H$ $H$ | C <sub>3</sub> H <sub>7</sub> OH |      |
|    |                 |     |                                                                 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$         |                                  | (2)  |
|    |                 |     | Reduction<br>OR nucleophilic addition (1)<br>IGNORE heterolytic | Redox<br>"Nucleophilic reduction"                             |                                  |      |



| EXPECTED ANSWER |       | EXPECTED ANSWER                                                                                           | ACCEPT                                                                                                                                              | REJECT                                                                  | MARK |
|-----------------|-------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------|
|                 | (iii) | $CH_{3}CH_{2}CH(OH)C \equiv N$ (1)<br>nucleophilic addition (1) both words needed<br>IGNORE "heterolytic" | $C_{2}H_{5}CH(OH)CN$ OR $CH_{3}CH_{2}CH(OH)CN$ OR full structural formula e.g. $H H OH$ $H-C-C-C-C-CN$ $H H H$ $OR$ $H H O$ $H - C-C-C-C=N$ $H H H$ |                                                                         | (2)  |
| (b)             | (i)   | $Mg + C_2H_5Br \rightarrow C_2H_5MgBr$<br>IGNORE charges                                                  |                                                                                                                                                     | C <sub>2</sub> H <sub>5</sub> BrMg<br>C <sub>2</sub> H <sub>5</sub> MgI | (1)  |
|                 | (ii)  | Dry ethoxyethane<br>OR dry ether<br>IGNORE references to I <sub>2</sub> OR heat                           |                                                                                                                                                     |                                                                         | (1)  |

|    | EXPECTED ANSWER |                                                                                                                                                                                                                         | ACCEPT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | REJECT                            | MARK |
|----|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------|
| (c | z) (i)          | With propanone:         Structure: (CH <sub>3</sub> ) <sub>2</sub> C(OH)CH <sub>2</sub> CH <sub>3</sub> (1)         Name:         2-methylbutan-2-ol         OR 2-hydroxy-2-methylbutane (1)         IGNORE punctuation | C <sub>2</sub> H <sub>5</sub> in lieu of CH <sub>2</sub> CH <sub>3</sub><br>OR<br>the full structural formula<br>e.g.<br>$\begin{array}{c} H_{3}C & H & H \\ H_{3}C & C & C & C \\ H_{3}C & C$ | С <sub>5</sub> H <sub>11</sub> OH | (2)  |

| EXPECTED ANSWER |                                                                                                                                                                                | ACCEPT                                                                                                                                                                                                                                                                                                            | REJECT                                                                                                                                                                                                                 | MARK |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|                 | With butanal:<br>Structure:<br>$CH_3CH_2CH_2CH(OH)CH_2CH_3$ (1)<br>Name:<br>hexan-3-ol (1)                                                                                     | the full structural formula<br>e.g.<br>H H H H H H<br>H-C-C-C-C-C-C-H<br>H H H H H H<br>OR<br>H H H H H H H<br>H-C-C-C-C-C-C-H<br>H H H H H H<br>H-C-C-C-C-C-C-C-H<br>H H H O H H<br>H<br>CQ structure provided it is<br>a secondary alcohol<br>hexane-3-ol<br>CQ name provided that it is<br>a secondary alcohol | С <sub>6</sub> H <sub>13</sub> OH                                                                                                                                                                                      | (2)  |
| (ii)            | H (group in butanal) is planar (1)<br>attacked (with equal probability) from two directions (1)<br>Mark each aspect independently unless reference<br>made to carbocations etc |                                                                                                                                                                                                                                                                                                                   | Butanal/the molecule/it is<br>planar<br>OR Butanal/the molecule/it is<br>linear<br>References to carbocations<br>OR carbonium ions<br>OR Planar intermediates<br>OR S <sub>N</sub> 1 mechanisms scores (0<br>out of 2) | (2)  |