Mark Scheme (Results) Summer 2007

GCE

GCE Chemistry (6245) Paper 01

General Guidance on Marking

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge.

Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the mark scheme
The mark scheme gives you:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/ phrases which are put together in a meaningless manner. Answers must be in the correct context.

1 / means that the responses are alternatives and either answer should receive full credit.
2 () means that a phrase/ word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
3 [] words inside square brackets are instructions or guidance for examiners.
4 Phrases/ words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
5 ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- show clarity of expression
- construct and present coherent arguments
- demonstrate an effective use of grammar, punctuation and spelling.

Full marks will be awarded if the candidate has demonstrated the above abilities. Questions where QWC is likely to be particularly important are indicated (QWC*) in the mark scheme BUT this does not preclude others.

	EXPECTED ANSWER			ACCEPT	REJ ECT	MARK
1	(a)	(i)	effervescence (1) COOH present/ acid/ acidic/ contains H^{+}(1) [if wrong gas is identified second mark is lost]	bubbles, fizzing	Gas/ CO_{2} evolved J ust 'acid-base reaction'	(2)
		(ii)	Decolourises (1) OR brown/ orange/ yellow to colourless compound contains $\mathrm{C}=\mathrm{C} /$ unsaturated (1) white precipitate so is a phenol (1)	Alkene Activated benzene ring/ OH on benzene ring	"clear" used instead of "colourless" J ust 'double bond'	(3)
	(b)	(i)	Four (1) (Two) cis/ trans (or geometric), and (two) chiral/ optical isomers/ enantiomers (1) OR Two cis-trans/ geometric isomers (1) Two optical isomers/ enantiomers (1) OR cis-trans/ geometric isomers and optical isomers/ enantiomers ($\mathbf{1}$ only)	Correct description of the idea of cis-trans or optical isomerism without the name	Rotates plane of plane-polarised light	(2)
		(ii)	Molecule has a chiral centre/ chiral carbon/ carbon with four different groups (1) having non-superimposable mirror images (1)		Asymmetric carbon atom/ chiral molecule	(2)

	EXPECTED ANSWER			ACCEPT	REJ ECT	MARK
2	(a)	$\begin{aligned} & \hline \text { (i) } \\ & Q \\ & \text { W } \\ & C^{*} \end{aligned}$	Both orders correct (1) Expt $1+2$: as [B] doubles rate $\times 4$ so second order (wrt B) OR As [B] doubles with [A] constant rate $\times 4$ so second order (wrt B) (1) Expt $1+3$: as [A] doubles rate $\times 2$ so first order (wrt A) OR As [A] doubles with [B] constant rate $\times 2$ so first order (wrt A) (1) Omission of experiment numbers or failure to refer to constant concentration of the other reagent penalise once only			(3)
		(ii)	$\begin{aligned} & \text { rate }=k[A][B]^{2} \\ & \text { Can use upper or lower case " } k \text { " } \end{aligned}$	Must be consequential on (i)		(1)
		(iii)	$\mathrm{k}=\frac{0.000195}{0.10 \times 0.10^{2}}=0.195(\mathbf{1}) \mathrm{mol}^{-2} \mathrm{dm}^{6} \mathrm{~s}^{-1} \mathbf{(1)}$ [IGNORE s.f. in answer] [If wrong experiment chosen only unit mark available]	Both marks consequential on (ii), but rate equation must include k		(2)

	EXPECTED ANSWER			ACCEPT	REJ ECT	MARK
3	(a)	(i)	$\begin{aligned} & \text { uses } \mathrm{E}^{\circ} \text { values to find } \mathrm{E}_{\text {reaction }}=(+1.57(\mathrm{~V}) \text { (1) } \\ & \mathrm{Zn}+2 \mathrm{NO}_{3}{ }^{-}+4 \mathrm{H}^{+} \rightarrow \mathrm{Zn}^{2+}+2 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \text { (1) } \end{aligned}$	Equation with equilibrium sign	-1.57 Equation with Zn on the right	(2)
		(ii)	$E_{\text {reaction }}$ for the production of hydrogen is (+) $0.76(\mathrm{~V})(\mathbf{1})$ smaller than reaction in (i) so is less likely (1) OR NO_{3}^{-}being the oxidised form of a redox couple with a more positive E^{θ} than $E^{\theta} \mathrm{H}^{+} / 1 / 2 \mathrm{H}_{2}$ (1) is a stronger oxidising agent than $\mathrm{H}^{+}(\mathbf{1})$			(2)
		(iii)	hexaaquacopper(II) (1) OR (1) Both marks stand alone [IGNORE charge] [IGNORE how $\mathrm{H}_{2} \mathrm{O}$ ligand is bonded to central cation]	hexaquacopper(II)	formula	(2)

EXPECTED ANSWER			ACCEPT	REJ ECT	MARK
	(iv)	ligand exchange/ replacement/ substitution (1) $\begin{align*} & {\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{Cl}^{-} \rightleftharpoons \mathrm{CuCl}_{4}{ }^{2-}+6 \mathrm{H}_{2} \mathrm{O} \text { (1) }} \tag{1}\\ & \mathrm{OR} \\ & {\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{HCl} \rightleftharpoons \mathrm{CuCl}_{4}{ }^{2-}+4 \mathrm{H}^{+}+6 \mathrm{H}_{2} \mathrm{O}} \tag{1} \end{align*}$	ALLOW \rightarrow $\begin{aligned} & {\text { Accept } \mathrm{H}_{2} \mathrm{CuCl}_{4}+2 \mathrm{H}^{+} \text {for }}_{\mathrm{CuCl}_{4}^{2-}+4 \mathrm{H}^{+}} \end{aligned}$		(2)
(b)	(i)	E° for the reaction is $-0.39(\mathrm{~V})$ (so not feasible) [value is required].	Cu^{2+} being the oxidised form of the redox couple with the more negative E^{θ}, will not oxidise I^{-}		(1)
	(ii)	Cul is a solid (so conditions are not standard) (1) Equilibrium is pulled over/moves to favour the r.h.s. (1)		J ust ' conditions not standard'	(2)
	(iii)	$\begin{aligned} & {\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{+}} \\ & \mathrm{OR}\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{+} \end{aligned}$	$\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$	$\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{6}\right]^{+}$ Any 2+complex	(1)
	(iv)	(atmospheric) oxygen (1) oxidises Cu^{+}to $\mathrm{Cu}^{2+}(\mathbf{1})$		Air for oxygen	(2)

| | EXPECTED ANSWER | | | ACCEPT | REJ ECT |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| (c) | (i) | starch (1)
 blue-black/ blue/ black to colourless (1) | MARK | | |
| (ii) | (If added too early) insoluble complex/ black solid formed,
 making titre too low
 OR (If added too early) insoluble complex/ black solid
 formed, removes iodine from solution
 OR (If added too early) insoluble complex/ black solid
 formed, causes inaccurate titre.
 OR (If added too early) insoluble complex/ black solid
 formed, not all the iodine is titrated. | (2) | | | |

	EXPECTED ANSWER			ACCEPT	REJ ECT	MARK
4	(a)	Reagent: chloromethane/ $\mathrm{CH}_{3} \mathrm{Cl}$ (1) Catalyst: (anhydrous) aluminium chloride/ $\mathrm{AlCl}_{3} / \mathrm{Al}_{2} \mathrm{Cl}_{6}$ (1) OR equivalent bromides Mark independently		Bromomethane/ $\mathrm{CH}_{3} \mathrm{Br}$ / iodomethane/ $\mathrm{CH}_{3} \mathrm{I}$ iron(III) chloride/ bromide	iron	(2)
	(b)	(i)	(free) radical substitution			(1)
		(ii)	$\begin{aligned} & \mathrm{Cl}_{2} \rightarrow 2 \mathrm{Cl}^{-}(\mathbf{1}) \\ & \mathrm{PhCH}_{3}+\mathrm{Cl}^{-} \rightarrow \mathrm{PhCH}_{2}^{-}+\mathrm{HCl} \\ & \mathrm{PhCH}_{2}^{-}+\mathrm{Cl}_{2} \rightarrow \mathrm{PhCH}_{2} \mathrm{Cl}+\mathrm{Cl}^{-} \end{aligned}$ any one of: $2 \mathrm{PhCH}_{2}^{\circ} \rightarrow \mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$ $\mathrm{PhCH}_{2}{ }^{+}+\mathrm{Cl}^{-} \rightarrow \mathrm{PhCH}_{2} \mathrm{Cl}$ $\begin{equation*} 2 \mathrm{Cl}^{\circ} \rightarrow \mathrm{Cl}_{2} \tag{1} \end{equation*}$ [IGNORE curly arrows] If the initiation or propagation steps are wrong, only the termination step can score consequentially on any two of their radicals.		Dot must not be on Ph penalise once P instead of Ph penalise once	(4)

| | EXPECTED ANSWER | | ACCEPT | REJ ECT |
| :--- | :--- | :--- | :--- | :--- | :---: |
| (iii)flask and vertical condenser - need not be shown as separate
 items (1) [Ignore direction of water flow; penalise sealed
 condenser]
 gas entry into liquid in flask (1) [allow tube to go through
 the side of the flask, but tube must not be blocked by flask
 wall]
 heating from a electric heater/ heating mantle/ sand
 bath/ water bath/ oil bath (1) diagram or words
 labelling of diagram not necessary
 [IGNORE uv source] | Allow the gas to be
 bubbled down a tube
 coaxial with the
 condenser bore. | Bubbling gas into a
 beaker OR other vessel
 without a condenser $\mathbf{0}$
 (out of 3) | (3) | |

	EXPECTED ANSWER		ACCEPT	REJ ECT	MARK
(c)	(i)		$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CN}$	$\mathrm{PhCH}_{2} \mathrm{CN}$	(1)
	(ii)	hydrochloric acid / HCl (aq) OR dilute/ aqueous sul phuric acid/ $\mathrm{H}_{2} \mathrm{SO}_{4}$ (aq) (1) boil/ heat (under reflux)/ reflux (1) conditional on correct or nearly correct reagents i.e. "acid" or " H^{+}" OR $\mathrm{NaOH}(\mathrm{aq})$ and boil (1) Acidify (1)		HCl alone Conc sulphuric acid Warm	(2)
	(iii)	ethanol and (conc) sulphuric acid (1) heat/ warm/ boil/ reflux (1) conditional on presence of ethanol OR $\mathrm{PCl}_{5} / \mathrm{PCl}_{3} / \mathrm{SOCl}_{2}(\mathbf{1})$ Add ethanol (1) conditional on first mark PCl_{5} and ethanol (1) only PCl_{5} in ethanol (0)	Formulae or names throughout	Alcohol for ethanol Dilute sulphuric acid Alcohol for ethanol	(2)

	EXPECTED ANSWER		ACCEPT	REJ ECT	MARK
(d)	(i)	Ion at 105 is (1) \underline{X} is OR	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}^{+}$ $\begin{aligned} & \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOCH}_{3} / \\ & \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{CH}_{3} / \\ & \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}_{2} \mathrm{OH} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO} \\ & \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}^{+} \end{aligned}$	(2)
I	(ii)	or (1) Side-chain(s) oxidised to COOH (1) [N.B. one of the side-chains must be capable of being oxidised to COOH to get $2^{\text {nd }}$ mark]			(2)

	EXPECTED ANSWER		ACCEPT	REJ ECT	MARK
(e)	(i)	PCl_{5} / Phosphorus pentachloride/ phosphorus(V) chloride OR $\mathrm{PCl}_{3} /$ Phosphorus trichloride/ phosphorus(III) chloride OR SOCl 2 / Thionyl chloride/ sulphur oxide dichloride			(1)
	(ii)	At least one ester link/ ${ }^{-\mathrm{c}_{\mathrm{o}}^{\prime \prime}} \mathrm{o}-$ fully shown (1) - stand alone remainder of structure (1) OR [no need for n or brackets] Check oxygen atoms carefully; must be four If more than one repeating unit is shown the repeat unit must be identified			(2)
	(iii)	(concentrated) acid/ alkali (1) (ester link) would be hydrolysed OR polymer would react to form the monomers/ alcohol and acid (1) conditional on $1^{\text {st }}$ mark	A named acid or alkali	Any substance that is not an acid or an alkali Hydrolysis to acid chloride	(2)
					24 marks

