

Mark Scheme (Results) Summer 2008

GCE

GCE Chemistry (6244/01)

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the mark scheme

- 1 / means that the responses are alternatives and either answer should receive full credit.
- 2 () means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
- 3 [] words inside square brackets are instructions or guidance for examiners.
- 4 Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is **essential** to the answer
- ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
1 (a)	Can be given in either order			4
	1 st functional group alkene or C=C or carbon- carbon double bond (1)		Just 'double bond' or just 'carbon double bond'	
	bromine water/Br ₂ turns (from orange/brown etc. to) colourless/decolorised (1) INITIAL COLOUR NOT REQUIRED	KMnO ₄ Acidified decolorised Alkaline green	'clear' instead of 'colourless'	
	2 nd functional group carboxylic (acid) O O H	carboxyl	"carbonyl"	
	(1) on addition of Na_2CO_3 or $NaHCO_3$ or CaCO $_3$ or Mg , fizzing occurs (1) OR	gas evolved which turns limewater milky OR or universal indicator/ blue litmus turns red	Just "a gas/CO ₂ /H ₂ evolved" for fizzing	
	(warm with) a named alcohol plus conc. acid (as catalyst), pleasant/fruity smell lgnore references to testing with PCl_5			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)(i)	W as it contains an aldehyde group / -CHO group OR W can be oxidised (whereas X cannot) OR X cannot be oxidised OR W as X is a ketone (which cannot be oxidised)		W with no reason or an incorrect reason (0) Contains C=0	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)(ii)	CH ₂ OHCH ₂ OH OR H H H C C C H HO OH OR Ethan(e)-1-2-diol	(CH₂OH)₂		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)(iii)	н—о с—с о—н	(COOH) ₂		1
	OR HOOCCOOH OR Ethanedioic acid/oxalic acid	ethan(e)-1,2-dioic acid or ethandioic acid	Any other name	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (c)(i)		CQ polyester on basis of monomers in 1(b)(ii) and (iii)		2
	OR (2) for a correct structure IF STRUCTURE IS INCORRECT, BUT A CORRECT ESTER LINKAGE IS FULLY DRAWN (1) the correct repeat unit must contain only 4 carbon and 4 oxygen atoms	-CH ₂ CH ₂ - instead of H C C C I I I I I I I I I I I I I I I		

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number		•		
1 (c)(ii)	Condensation			1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
2 (a)	<i>Na</i> ₂ <i>O</i> (1)	Na_2O_2 (1)		3
	P_4O_{10} or P_2O_5 or P_4O_6 or P_2O_3 (1) SO_2 or SO_3 (1)			

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
2 (b)(i)	$Na_2O + H_2O \rightarrow 2NaOH$	2Na ⁺ OH ⁻		1
	2 2	OR		
	Ignore state symbols	$2Na^{+} + 2OH^{-}$		
		OR		
		$Na_2O_2 + 2H_2O \rightarrow 2NaOH + H_2O_2$		
		OR		
		$Na_2O_2 + H_2O = 2NaOH$		
		+ ½O ₂		

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
2 (b)(ii)	$P_4O_6 + 6H_2O \rightarrow 4H_3PO_3$		$P(OH)_3$ instead of	1
	OR		H_3PO_3	
	$P_2O_3 + 3H_2O \rightarrow 2H_3PO_3$			
	OR			
	$P_4O_{10} + 6H_2O \rightarrow 4H_3PO_4$			
	OR			
	$P_2O_5 + 3H_2O \rightarrow 2H_3PO_4$			
	Ignore state symbols			

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
2 (b)(iii)	$SO_2 + H_2O \rightarrow H_2SO_3$			1
	OR			
	$SO_3 + H_2O \rightarrow H_2SO_4$			
	Ignore state symbols			

Question	Correct Answer	Acceptable	Reject	Mark
Number 2 (c)		Answers		2
	First mark:-			
	EITHER			
	Tin more stable at +4 (than at +2) whereas lead more stable at +2		"Sn ²⁺ less stable than Pb ²⁺ ions"	
	(than at +4)		OR	
	OR		"Pb(II) is more stable than Sn(II)"	
	+2 (oxidation state) becomes more			
	stable relative to +4 down the group (OWTTE) (1)			
	Second mark:-			
	(so) Fe ³⁺ reduced to Fe ²⁺ (by Sn ²⁺)			
	OR			
	(2) $Fe^{3+} + Sn^{2+} \rightarrow Sn^{4+} + (2) Fe^{2+}$			
	OR			
	tin(II) stronger reducing agent (than lead(II))			
	OR			
	redox reaction between Sn ²⁺ and Fe ³⁺			
	OR			
	Sn^{2+} oxidised to Sn^{4+} / $Sn^{2+} \rightarrow Sn^{4+} + 2e^{-}$			
	OR			
	tin(II) acts as a (strong) reducing agent			
	OR			
	tin(II) reduces Fe ³⁺ (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (d)	$SiCl_4 + 2H_2O \rightarrow SiO_2 + 4HCl$ Species (1) Balancing (1) Ignore state symbols	$\cdots \rightarrow SiO_2.xH_2O$ OR $\cdots \rightarrow SiO_2.2H_2O$ OR + $4H_2O$ $\cdots \rightarrow Si(OH)_4 + 4HCI$		2

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
3 (a)	$K_p = \frac{p_{NO_2}^2}{p_{N_2O_4}}$		[]	1
	IGNORE UNITS HERE			

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
3 (b)(i)	$p_{NO_2} = 0.8 \times 1.1$			3
	=0.88(atm)			
	and			
	$p_{N_2O_4} = 0.2 \times 1.1$			
	=0.22(atm) (1)			
	$K_p = \frac{(0.88)^2}{(0.22)}$			
	$K_p = 3.52$ (1)			
	atm (1)			
	SECOND MARK IS CQ ON PARTIAL PRESSURES AS CALCULATED			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)(ii)	First mark: $X_{N_2O_4} = 0.10$ $X_{NO_2} = 0.90 \text{(1)}$ Second mark: $K_p \text{ constant or}$ use of $K_p = 3.52 \text{ or}$ use of $K_p \text{ calculated in}$ $3(b)(i) \text{(1)}$ Third mark: Value of P_T with some working e.g.	Mark CQ on first and second answers to	В	3
	$3.52 = \frac{(X_{NO_2} \times P_T)^2}{X_{N_2O_4} \times P_T}$ $3.52 = \frac{0.81}{0.10} \times P_T$ $P_T = 0.435 \text{(atm)} \text{(1)}$ $THIRD \ MARK \ NOT$ $AVAILABLE \ IF \ K_p$ $EXPRESSION \ DOES \ NOT$ $CONTAIN \ A \ p^2 \ TERM$	3(b)(ii) in range 0.43 to 0.44		

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
3 (c)(i)	Increases / gets larger/ gets bigger/ goes up/greater		more	1

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
3 (c)(ii)	First mark:	Mark	Le	2
	p_{NO}^2	consequentially	Chatelier	
	Fraction/quotient/ $\frac{p_{NO_2}^2}{}$ /numerator	on "decreases" in	argument	
	$p_{N_2O_4}$	(i)	scores (0)	
	has to increase (to equal new K_p) (1)			
	Second mark (can only be awarded for an answer that refers to the fraction/quotient above):			
	EITHER			
	so shifts to RIGHT hand side (as $p_{NO_2} \uparrow$ and			
	$p_{\scriptscriptstyle N_2O_4}$ \downarrow) / goes in forward direction			
	(as $p_{NO_2} \uparrow$ and $p_{N_2O_4} \downarrow$)			
	OR			
	so (more) N ₂ O ₄ changes to NO ₂			
	OR			
	so (equilibrium) yield of NO ₂ increases (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(i)	BOX A Ag _(g) (1) BOX B			3
	$F_{(g)}$ (1) C: enthalpy (change) of formation (of AgF)/ $\Delta H_{\rm f}$ / $\Delta H_{\rm formation}$ (1) IGNORE reference to 'standard'	'heat of formation'		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(ii)	EITHER $-205 = (+285) + (+731) + (+79) + EA + (-958)$ OR $EA = (-205) - (+285) - (+731) - (+79) - (-958)$ (1) $= -342 \text{ (kJ mol}^{-1} \text{ (1)}$ $CORRECT ANSWER ALONE \text{ (2)}$		Any algebraic expression for EA that would give an incorrect value (0). Any algebraic expression for EA that would give a +ve value for EA scores (0).	2

Question	Correct Answer	Acceptable	Reject	Mark
Number 4 (b)(i)	EITHER	Answers	Reference	3
			to "atoms"	
	FIRST MARK:		or "molecules"	
	EITHER		or "F ₂ " or "I ₂ " scores	
	iodide (ion) larger than fluoride (ion)		(0) overall	
		Just 'iodide has smaller charge		
	OR	density than	Ag—X scores	
	Sum of ionic radii in Agl larger (than in AgF)	fluoride' scores first mark	(0) overall	
	OR	THIST MAIN		
	halide ion or X or anion increases in size down group	"atomic radius of halide ion/X"		
		/anion increases		
	(1)	(down group)"		
	SECOND MARK:			
	Charges (on anions) same			
	(1)			
	THIRD MARK:			
	(ca) weaker (forces of) attraction between			
	(so) weaker (forces of) attraction between ions (in Agl)	"weaker ionic bonding" (1)	Just "weaker	
	(1)	l sending (1)	bonding (in	
	CORRECT REVERSE ARGUMENTS CAN SCORE		AgI)"	
	ALL THE MARKS			
	<u>OR</u>			
	_			
	First and second marks combined by stating			
		Just iodide has		
	I ⁻ (ion) larger than F ⁻ (2)	smaller charge		
		density than fluoride scores		
		only one mark		
	THIRD MARK:			
	(so) weaker (forces of) attraction between	"weaker ionic	Just "weaker	
	ions (in AgI) (1)	bonding" (1)	bonding (in	
	IGNORE ANY REFERENCES TO		AgI)"	
	POLARISATION OF IONS ANYWHERE IN (b)(i)			
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1	6244 O1

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
4 (b)(ii)	Theoretical value (assumes) 100% ionic OR no covalent character (1) (Experimental value is different) due to covalency OR covalent character OR polarisation of anion(1)		Mention of "Ag—X" OR "molecules" scores (0)	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)(iii)	(as) size of anion increases (down group) (1)	"atomic radius of halide ion/X" /anion increases (down group)"	Mention of "Ag—X" OR "molecules" scores (0) unless already penalised in 4 (b)(ii)	2
	(anions) more easily polarised (down group) OR more distortion of anion (down group) (1)	"more covalent character"/ "more covalent" for second mark	"more covalent bonding" (0)	
	MARK THESE POINTS INDEPENDENTLY			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (c)(i)	$\Delta H_{SOLN} = -\Delta H_{LATT} + \Delta H_{HYD}$ OR = -(-958) + (-464) + (-506) (1) = -12 (kJ mol ⁻¹) (1) CORRECT ANSWER ALONE SCORES 2	—12 kJ	+12 scores (0)	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (c)(ii)	AgF soluble / AgF slightly soluble (1) as ΔH_{SOLN} exothermic / negative (1) $MARK\ INDEPENDENTLY$ Mark CQ on sign and magnitude of answer in (c)(i)	If +12 (kJ mol ⁻¹) in (c)(i), AgF insoluble (1) because endothermic / positive (1)		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (a)(i)	$H_2O(I) \rightleftharpoons H^+(aq) + OH^-(aq)$ OR $2H_2O(I) \rightleftharpoons H_3O^+(aq) + OH^-(aq)$ IGNORE STATE SYMBOLS		if a full arrow is shown in the equation	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (a)(ii)	$K_W = [H^+_{(aq)}][OH^{(aq)}]$ OR $K_W = [H_3O^+_{(aq)}][OH^{(aq)}]$ IGNORE STATE SYMBOLS		If $[H_2O]$ included (0). $K_W = [H^+]^2$	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (a)(iii)	$pH = -\log_{10}[H^+]$ OR	pH = Ig 1/[H ⁺]		1
	$pH = -\log_{10}[H_3O^+]$ OR			
	in words			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (a)(iv)	$K_{w} = [H^{+}][OH^{-}]$ $5.48 \times 10^{-14} = [H^{+}]^{2}$ (1) $[H^{+}] = \sqrt{5.48 \times 10^{-14}}$ $[H^{+}] = 2.34 \times 10^{-7}$ (mol dm ⁻³) pH = 6.6(3) (1) correct answer with no working (2)		pH = 13.3 /13.6 scores (0)	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (a)(v)	(In pure water) $[H^+] = [OH^-]$ OR equal concentrations of H^+ and OH^-			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (b)(i)	12.5			1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
5 (b)(ii)	4.8 / 4.9 [no consequential marking from (i)]		5 or 5.0	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (b)(iii)	$K_a = \frac{[CH_3COO^-][H^+]}{[CH_3COOH]}$		expressions containing [H ₂ O]	1
	OR [<i>CH</i> ₂ <i>COO</i> ⁻][<i>H</i> ₂ <i>O</i> ⁺]		OR	
	$K_a = \frac{[CH_3COO^-][H_3O^+]}{[CH_3COOH]}$		"HA" generic equations	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (b)(iv)	(at half-neutralised point so) $pK_a = 4.8$ OR	Mark CQ on (ii)	Just pH = 4.8 as already credited in 5 (b)(ii)	2
	pH = p K_a (1) Ka = antilog ₁₀ (-4.8) Ka = 1.6 x 10 ⁻⁵ (mol dm ⁻³) (1)	Mark CQ on pKa If pKa = 4.9, Ka = 1.3 x 10 ⁻⁵	Answers to other than	
	Must be to two sig figs CORRECT ANSWER WITH OR WITHOUT WORKING (2)		2 s.f. 2.5 x 10 ⁻⁹ scores (0)	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (c)	Phenolphthalein: changes colour (OWTTE) in vertical part of the graph OR changes colour within a stated range anywhere from 7 to 11 (1) Methyl orange changes colour at a low(er) pH OR has already changed colour OR changes colour before the vertical (section) (1) [NB There must be a statement about methyl orange for second mark]	Allow range for methyl orange of 3 to 6 or colour change takes place below pH = 7	If colour change "pink to colourless" Just 'methyl orange changes colour outside the vertical range'	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (d)(i)	$H^{+}_{(aq)} + OH^{-}_{(aq)} \rightarrow H_2O_{(l)}$ for both (acids) OR $H_3O^{+}_{(aq)} + OH^{-}_{(aq)} \rightarrow 2H_2O_{(l)}$ for both (acids)	State symbols not essential.	Equations shown as equilibria	1
	OR Both (acids) fully ionised/fully dissociated (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (d)(ii)	EITHER HCN weak (acid) OR HCN ionises to (only) a small extent OR HCN equilibrium lies to the left (1)	"HCN not fully ionised" or "HCN partially dissociates / ionises"	Any idea that only partial neutralisation occurs negates first mark	2
	Energy taken in OR energy required for dissociation / ionisation (of HCN) (1) MARK INDEPENDENTLY	"endothermic dissociation of HCN"		

Question Number	Correct Answer		Acceptable Answers	Reject	Mark
6 (a)(i)	First two ma	ırks:			4
	For correct reagent (ignore all state symbols) (1) For correct condition(s), but only if with matching reagent (1)				
	CH ₃ CH(OH)CN does not have to Hydrolysis of -CN IGNORE MENTION Second two	N group to -COOH group:			
	Boil or heat (1)	a of a mineral acid (1) ependent on first mark	"H ⁺ " "warm"	conc H ₂ SO ₄ (0)	
	boil/heat (1)	a of correct alkali AND r name/formula of any	OH ⁻ AND boil /heat/warm (1)		
	IGNORE MENTIO	N OF "REFLUX"			

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
6 (a)(ii)	CH ₃ CH(OH)CH ₂ CH ₃ OR CH ₃ CH(OH)C ₂ H ₅ OR	CH ₃ CHOHCH ₂ CH ₃ OR CH ₃ CHOHC ₂ H ₅		1
	Full structural formula of the above	-O-H can be represented as -OH		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6 (b)(i)	W: ethanamide (1)	acetamide	Formulae	3
	X: methylamine (1)	(1-)aminomethane	methanamine	
	Y: ethanenitrile (1)	'methyl cyanide'	'ethanitrile'	

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
6 (b)(ii)	Reaction 1 Bromine/Br ₂ and sodium hydroxide/NaOH/potassium hydroxide/KOH (1) IGNORE CONC OR DILUTE OR AQUEOUS BEFORE NaOH / KOH		'bromine water' OR 'aqueous bromine'	3
	Reaction 2 phosphorus(V) oxide OR phosphorus pentoxide OR P ₄ O ₁₀ (1)	P ₂ O ₅	phosphorus oxide	
	Reaction 3 Iithium aluminium hydride (in dry ethoxyethane) OR LiAlH ₄ (in dry ethoxyethane) OR lithium tetrahydridoaluminate((III)) (in dry ethoxyethane) (1)	$LiAlH_4$ followed by water or acid OR H_2 and Ni/Pt/Pd (catalyst) OR Na and C_2H_5OH	$LiAlH_4$ in water (0) $NaBH_4$	
	MARK INDEPENDENTLY			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6 (b)(iii)	Reaction 2 dehydration (1)		'elimination (of water)'	2
	Reaction 3 reduction/redox (1)	'hydrogenation'		