Mark Scheme (Results) Summer 2008

GCE

GCE Chemistry (6244/ 01)

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the mark scheme

1 / means that the responses are alternatives and either answer should receive full credit.
2 () means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
3 [] words inside square brackets are instructions or guidance for examiners.
4 Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
5 ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (a)	Can be given in either order $1^{\text {st }}$ functional group alkene or $\mathrm{C}=\mathrm{C}$ or carbon- carbon double bond (1) bromine water/ Br_{2} turns (from orange/ brown etc. to) colourless/ decolorised (1) INITIAL COLOUR NOT REQUIRED $2^{\text {nd }}$ functional group carboxylic (acid) (1) on addition of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ or NaHCO_{3} or CaCO_{3} or Mg , fizzing occurs (1) OR (warm with) a named alcohol plus conc. acid (as catalyst), pleasant/ fruity smell Ignore references to testing with PCl_{5}	KMnO_{4} Acidified decolorised Alkaline green carboxyl gas evolved which turns limewater milky OR or universal indicator/ blue litmus turns red	J ust 'double bond' or just 'carbon double bond' 'clear' instead of 'colourless' "carbonyl" J ust "a gas/ $\mathrm{CO}_{2} / \mathrm{H}_{2}$ evolved" for fizzing	4

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1}$ (b)(i)	W as it contains an aldehyde group / -CHO group OR		W with no reason or an incorrect reason $\mathbf{(0)}$ Contains C=0	1
W can be oxidised (whereas \mathbf{X} cannot) OR X cannot be oxidised OR W as \mathbf{X} is a ketone (which cannot be oxidised)				

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)(ii)	$\mathrm{CH}_{2} \mathrm{OHCH}_{2} \mathrm{OH}$ OR OR Ethan(e)-1-2-diol	$\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{2}$		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)(iii)	 OR OR Ethanedioic acid/ oxalic acid	$(\mathrm{COOH})_{2}$ ethan(e)-1, 2-dioic acid or ethandioic acid	Any other name	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (c)(i)	 OR (2) for a correct structure IF STRUCTURE IS INCORRECT, BUT A CORRECT ESTER LINKAGE IS FULLY DRAWN (1) the correct repeat unit must contain only 4 carbon and 4 oxygen atoms	CQ polyester on basis of monomers in 1(b)(ii) and (iii) in relevant part of structure only (1) if STRUCTURE IS CORRECT, BUT the ester linkage has been written as $\mathrm{COO} / \mathrm{CO}_{2}$		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1}$ (c)(ii)	Condensation			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{2 ~ (a) ~}$	$\mathrm{Na}_{2} \mathrm{O}$ (1)	$\mathrm{Na}_{2} \mathrm{O}_{2}$ (1)		3
$\mathrm{P}_{4} \mathrm{O}_{10}$ or $\mathrm{P}_{2} \mathrm{O}_{5}$ or $\mathrm{P}_{4} \mathrm{O}_{6}$				
or $\mathrm{P}_{2} \mathrm{O}_{3}$ (1)				
SO_{2} or SO_{3} (1)				

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(i)	$\mathrm{Na}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}$ Ignore state symbols $2 \mathrm{Na}^{+} \mathrm{OH}^{-}$ OR $\ldots2 \mathrm{Na}^{+}+2 \mathrm{OH}^{-}$ OR $\mathrm{Na}_{2} \mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{O}_{2}$ OR $\begin{aligned} \mathrm{Na}_{2} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}= & 2 \mathrm{NaOH} \\ & +1 / 2 \mathrm{O}_{2} \end{aligned}$		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{2 ~ (b) (i i) ~}$	$\mathrm{P}_{4} \mathrm{O}_{6}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{3}$		$\mathrm{P}(\mathrm{OH})_{3}$ instead of	1
	OR		$\mathrm{H}_{3} \mathrm{PO}_{3}$	
	$\mathrm{P}_{2} \mathrm{O}_{3}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{3} \mathrm{PO}_{3}$			
OR				
$\mathrm{P}_{4} \mathrm{O}_{10}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{4}$				
OR				
$\mathrm{P}_{2} \mathrm{O}_{5}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{3} \mathrm{PO}_{4}$				
	Ignore state symbols			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{2 ~ (b) (i i i) ~}$	$\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{3}$ OR $\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$ Ignore state symbols			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)	First mark:			2
	EITHER			
	Tin more stable at +4 (than at +2) whereas lead more stable at +2 (than at +4)		" Sn^{2+} less stable than Pb^{2+} ions"	
	(than at +4)		" $\mathrm{Pb}(\mathrm{II})$ is more	
	OR		stable than Sn (II)"	
	+2 (oxidation state) becomes more stable relative to +4 down the group (OWTTE)			
	Second mark:-			
	(so) Fe^{3+} reduced to Fe^{2+} (by Sn^{2+})			
	$\text { (2) } \mathrm{Fe}^{3+}+\mathrm{Sn}^{2+} \rightarrow \mathrm{Sn}^{4+}+\text { (2) } \mathrm{Fe}^{2+}$			
	tin(II) stronger reducing agent (than lead(II))			
	redox reaction between Sn^{2+} and			
	Fe^{3+}			
	OR			
	Sn^{2+} oxidised to Sn^{4+} /			
	$\mathrm{Sn}^{2+} \rightarrow \mathrm{Sn}^{4+}+2 \mathrm{e}^{-}$			
	OR			
	tin(II) acts as a (strong) reducing agent			
	OR			
	tin(II) reduces Fe^{3+} (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (d)	$\begin{aligned} & \mathrm{SiCl}_{4}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{SiO}_{2}+4 \mathrm{HCl} \\ & \text { Species (1) } \\ & \text { Balancing (1) } \\ & \text { Ignore state symbols } \end{aligned}$	$\begin{aligned} & \ldots \rightarrow \mathrm{SiO}_{2} \cdot \mathrm{xH}_{2} \mathrm{O} \\ & \mathbf{O R} \ldots \rightarrow \mathrm{SiO}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O} \\ & \mathbf{O R} . . .+4 \mathbf{H}_{2} \mathbf{O} \\ & \ldots \rightarrow \mathrm{Si}(\mathrm{OH})_{4}+4 \mathrm{HCl} \end{aligned}$		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3 ~ (a)}$	$K_{p}=\frac{p_{\mathrm{NO}_{2}}}{p_{N_{2} \mathrm{O}_{4}}}$ IGNORE UNITS HERE	$[\quad]$	1	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)(i)	$\begin{aligned} p_{\mathrm{NO}_{2}}= & 0.8 \times 1.1 \\ & =0.88(\mathrm{~atm}) \end{aligned}$ and $\begin{align*} p_{N_{2} O_{4}}= & 0.2 \times 1.1 \\ & =0.22(\mathrm{~atm}) \tag{1} \end{align*}$ $\begin{aligned} & K_{p}= \frac{(0.88)^{2}}{(0.22)} \\ & K_{p}=3.52 \text { (1) } \\ & \quad \operatorname{atm} \end{aligned}$ SECOND MARK IS CQ ON PARTIAL PRESSURES AS CALCULATED			3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)(ii)	First mark: $\begin{align*} & X_{\mathrm{N}_{2} \mathrm{O}_{4}}=0.10 \\ & X_{\mathrm{NO}_{2}}=0.90 \tag{1} \end{align*}$ Second mark: K_{p} constant or use of $K_{p}=3.52$ or use of K_{p} calculated in 3(b)(i) Third mark: Value of P_{T} with some working e.g. $\begin{align*} & 3.52=\frac{\left(X_{\mathrm{NO}_{2}} \times \mathrm{P}_{\mathrm{T}}\right)^{2}}{X_{\mathrm{N}_{2} \mathrm{O}_{4}} \times \mathrm{P}_{\mathrm{T}}} \\ & 3.52=\frac{0.81}{0.10} \times \mathrm{P}_{\mathrm{T}} \\ & \mathrm{P}_{\mathrm{T}}=0.435(\mathrm{~atm}) \tag{1} \end{align*}$ THIRD MARK NOT AVAILABLE IF K_{p} EXPRESSION DOES NOT CONTAIN A p^{2} TERM	Mark CQ on first and second answers to 3(b)(ii) in range 0.43 to 0.44	B	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (c)(i)	Increases / gets larger/ gets bigger/ goes up/ greater		more	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (c)(ii)	First mark: Fraction/quotient/ $\frac{p_{\mathrm{NO}_{2}}^{2}}{p_{\mathrm{N}_{2} \mathrm{O}_{4}}}$ / numerator has to increase (to equal new K_{p}) (1) Second mark (can only be awarded for an answer that refers to the fraction/quotient above): EITHER so shifts to RIGHT hand side (as $p_{\mathrm{NO}_{2}} \uparrow$ and $p_{\mathrm{N}_{2} \mathrm{O}_{4}} \downarrow$) / goes in forward direction (as $p_{\mathrm{NO}_{2}} \uparrow$ and $p_{\mathrm{N}_{2} \mathrm{O}_{4}} \downarrow$) OR so (more) $\mathrm{N}_{2} \mathrm{O}_{4}$ changes to NO_{2} OR so (equilibrium) yield of NO_{2} increases (1)	Mark consequentially on "decreases" in (i)	Le Chatelier argument scores (0)	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{4 ~ (a) (i)}$	BOX A $\mathrm{Ag}_{(\mathrm{g})}$ (1) BOX B $\mathrm{F}_{(\mathrm{g})}$ (1) C: enthalpy (change) of formation (of AgF)/ $\Delta \mathrm{H}_{\mathrm{f}} / \Delta \mathrm{H}_{\text {formation (1) }}$ IGNORE reference to 'standard'	'heat of formation'		3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(ii)	EITHER $-205=(+285)+(+731)+(+79)+\text { EA }+(-958)$ OR $\begin{equation*} \text { EA }=(-205)-(+285)-(+731)-(+79)-(-958) \tag{1} \end{equation*}$ $=-342\left(\mathrm{~kJ} \mathrm{~mol}{ }^{-1}\right)$ (1) CORRECT ANSWER ALONE (2)		Any algebraic expression for EA that would give an incorrect value (0). Any algebraic expression for EA that would give a +ve value for EA scores (0).	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)(ii)	Theoretical value (assumes) 100\%ionic OR no covalent character (1)		2	
(Experimental value is different) due to covalency OR covalent character OR polarisation of anion(1)	Mention of "Ag-X" OR "molecules" scores (0)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)(iii)	(as) size of anion increases (down group) (1)	"atomic radius of halide ion/ X / anion increases (down group)"	Mention of "Ag-X" OR "molecules" scores (0) unless already penalised in 4 (b)(ii)	2
	(anions) more easily polarised (down group) OR more distortion of anion (down group)	"more covalent character"/ "more covalent" for second mark	"more covalent bonding" (0)	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{4 (c) (\mathbf { i })}$	$\Delta H_{\text {SOLN }}=-\Delta H_{\text {LATT }}+\Delta H_{\text {HYD }}$ OR $=-(-958)+(-464)+(-506) ~(1)$ $=-12(k J ~ m o l ~$ -1 (1) CORRECT ANSWER ALONE SCORES 2	+12 scores $\mathbf{(0)}$	2	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (c)(ii)	AgF soluble / AgF slightly soluble (1) as $\Delta \mathrm{H}_{\text {soln }}$ exothermic / negative (1) MARK INDEPENDENTLY Mark CQ on sign and magnitude of answer in (c)(i)	If $+12\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ in (c)(i), AgF insoluble (1) because endothermic / positive (1)		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{5 (a) (i)}$	$\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$ OR $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$ IGNORE STATE SYMBOLS		if a full arrow is shown in the equation	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (a)(ii)	$K_{W}=\left[{H^{+}}_{(a q)}\right]\left[\mathrm{OH}_{(a q)}^{-}\right]$ OR $\mathrm{K}_{W}=\left[\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(a q)}\right]\left[\mathrm{OH}^{-}{ }_{(a q)}\right]$ IGNORE STATE SYMBOLS		If $\left[\mathrm{H}_{2} \mathrm{O}\right.$] included (0). $\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]^{2}$	1

\(\left.$$
\begin{array}{|l|l|l|l|l|}\hline \begin{array}{l}\text { Question } \\
\text { Number }\end{array}
$$ \& Correct Answer \& Acceptable Answers \& Reject \& Mark

\hline \mathbf{5} (a)(iii) \& p H=-\log _{10}\left[\mathrm{H}^{+}\right]

\mathbf{O R}

p H=-\log _{10}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]

\mathbf{O R}

in words\end{array} \quad \mathrm{pH=} \mathrm{\lg 1 /[H}^{+}\right]\)| |
| :--- |

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (a)(iv)	$\begin{aligned} & K_{w}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] \\ & 5.48 \times 10^{-14}=\left[\mathrm{H}^{+}\right]^{2} \quad \text { (1) } \\ & {\left[\mathrm{H}^{+}\right]=\sqrt{5.48 \times 10^{-14}}} \\ & {\left[H^{+}\right]=2.34 \times 10^{-7}(\mathrm{~mol} \mathrm{dm}} \\ & p H=6.6(3) \quad \text { (1) } \end{aligned}$ correct answer with no working (2)		$\begin{aligned} & \mathrm{pH}=13.3 \\ & / 13.6 \end{aligned}$ scores (0)	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{5}(\mathbf{a})(\mathbf{v})$	(In pure water) $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$ $\mathbf{O R}$ equal concentrations of H^{+}and OH^{-}			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{5 ~ (b) (i) ~}$	12.5			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{5}$ (b)(ii)	$4.8 / 4.9$ [no consequential marking from (i)]		5 or 5.0	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{5}$ (b)(iii)	$\mathrm{K}_{a}=\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$		expressions containing $\left[\mathrm{H}_{2} \mathrm{O}\right]$	1
	OR		OR	
	$\mathrm{K}_{a}=\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$		"HA" generic equations	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (b)(iv)	(at half-neutralised point so) $\mathrm{pK}_{\mathrm{a}}=4.8$ OR $\begin{equation*} \mathrm{pH}=\mathrm{pK}_{\mathrm{a}} \tag{1} \end{equation*}$ $\begin{aligned} & \mathrm{Ka}=\operatorname{antilog}_{10}(-4.8) \\ & \mathrm{Ka}=1.6 \times 10^{-5}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \\ & (\mathbf{1}) \end{aligned}$ Must be to two sig figs WITHOUT WORKING (2)	Mark CQ on (ii) Mark CQ on pKa If $\mathrm{pKa}=4.9, \mathrm{Ka}=1.3 \times 10^{-5}$	Just pH = 4.8 as already credited in 5 (b)(ii) Answers to other than 2 s.f. 2.5×10^{-9} scores (0)	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (c)	Phenolphthalein: changes colour (OWTTE) in vertical part of the graph OR changes colour within a stated range anywhere from 7 to 11		If colour change "pink to colourless"	2
Methyl orange changes colour at a low(er) pH OR has already changed colour OR changes colour before the vertical (section) [NB There must be a statement about methyl orange for second mark]	Allow range for methyl orange of 3 to 6 or colour change takes place below pH =7	J ust 'methyl orange changes colour outside the vertical range'		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (d)(i)	$\mathrm{H}_{(a q)}^{+}+\mathrm{OH}_{(a q)}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(l)}$ for both (acids) OR $\mathrm{H}_{3} \mathrm{O}_{(a q)}^{+}+\mathrm{OH}^{-}{ }_{(a q)} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(l)}$ for both (acids) OR Both (acids) fully ionised/ fully dissociated (1)	State symbols not essential.	Equations shown as equilibria	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (d)(ii)	EITHER HCN weak (acid) OR HCN ionises to (only) a small extent OR HCN equilibrium lies to the left Energy taken in OR energy required for dissociation / ionisation (of HCN) (1) MARK INDEPENDENTLY	"HCN not fully ionised" or "HCN partially dissociates / ionises" "endothermic dissociation of HCN"	Any idea that only partial neutralisation occurs negates first mark	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{6}$ (a)(ii)	$\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}_{3}$	$\mathrm{CH}_{3} \mathrm{CHOHCH}_{2} \mathrm{CH}_{3}$ $\mathbf{O R}$ $\mathrm{CH}_{3} \mathrm{CHOHC}_{2} \mathrm{H}_{5}$		1
	$\mathbf{O R}$ $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{C}_{2} \mathrm{H}_{5}$	OR OR Full structural formula of the above	-O-H can be represented as -OH	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{6 ~ (b) (i) ~}$	W: ethanamide (1)	acetamide	Formulae	3
	X: methylamine (1)	(1-)aminomethane	methanamine	
	Y: ethanenitrile (1)	'methyl cyanide'	'ethanitrile'	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6 (b)(ii)	Reaction 1 Bromine/ Br_{2} and sodium hydroxide/ NaOH / potassium hydroxide/ KOH (1) IGNORE CONC OR DILUTE OR AQUEOUS BEFORE $\mathrm{NaOH} / \mathrm{KOH}$ Reaction 2 phosphorus(V) oxide OR phosphorus pentoxide OR $\mathrm{P}_{4} \mathrm{O}_{10}$ (1) Reaction 3 lithium aluminium hydride (in dry ethoxyethane) OR LiAlH_{4} (in dry ethoxyethane) OR lithium tetrahydridoaluminate((III)) (in dry ethoxyethane) (1) MARK INDEPENDENTLY	$\mathrm{P}_{2} \mathrm{O}_{5}$ LiAlH_{4} followed by water or acid OR H_{2} and $\mathrm{Ni} / \mathrm{Pt} / \mathrm{Pd}$ (catalyst) OR Na and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	'bromine water' OR 'aqueous bromine' phosphorus oxide LiAlH_{4} in water (0) NaBH_{4}	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{6 ~ (b) (i i i) ~}$	Reaction 2 (1) dehydration (1) Reaction 3 reduction/redox (1) 'hydrogenation'	'elimination (of water)'	2	

