Mark Scheme (Results) Summer 2008

GCE

GCE Chemistry (6245/ 01)

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the mark scheme

1 / means that the responses are alternatives and either answer should receive full credit.
2 () means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
3 [] words inside square brackets are instructions or guidance for examiners.
4 Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
5 ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- show clarity of expression
- construct and present coherent arguments
- demonstrate an effective use of grammar, punctuation and spelling.

Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated "QWC" in the mark scheme BUT this does not preclude others.

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (a)	e.m.f. of a half cell relative/ compared to a (standard) hydrogen electrode OR voltage produced from a half cell joined to a hydrogen electrode (1) (solutions at) $1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ concentration, (gases at) 1 atm/ $100 \mathrm{kPa} / 10^{5} \mathrm{~Pa} / 1 \mathrm{Bar}$ pressure and stated temperature (1) all 3 conditions needed STAND ALONE	Potential (difference) / voltage for emf emf of a cell with standard hydrogen as the left electrode A description of the half cell e.g. a metal dipping into a solution of its ions 101 kPa 298 K or $25^{\circ} \mathrm{C}$ If any other temperature is quoted it must be as an example of a stated temperature	SHE 'constant' pressure "STP" Room temperature Just " 273 K"	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1 ~ (b) ~}$	Can only measure a potential difference/ emf (if a reference electrode is present) OR voltmeter needs 2 connections OR Cannot measure the potential difference between a metal and a solution of its ions	Just "electron source and sink"	1	
(o make				
comparisons				
between				
half cells				

\hline\end{array}\right.\)

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (c)(i)	$1^{\text {st }}$ mark (simultaneous) oxidation and reduction of a (single) species/ substance/ reactant/ compound/ chemical Or the oxidation state/ number is both increased and decreased of a (single) species/ substance/ reactant/ compound/chemical Or a (single) species/ substance/ reactant/compound/ chemical both loses and gains electrons (1) $2^{\text {nd }}$ mark For a given type of atom within an ion/ molecule Or Illustrated by a suitable example in which the individual atom is identified (1)		oxidation and reduction occur at the same time oxidation states are ...	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1}$ (c)(ii)	$2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2} \quad$ (1)	$2 \mathrm{H}^{+}$on both sides of equation	3	
$\mathrm{E}_{\text {cell }}=(+) 1.09$ (V) (1)	E	Greater than any reaction is feasible (1) $3^{\text {rd }}$ mark must be cq on sign of $\mathrm{E}_{\text {cell }}$	other stated number	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark		
$\mathbf{1}$ (c)(iii)	activation energy of the reaction may be high OR reaction too slow to be observed	J ust "Not enough energy to overcome the activation energy"	1			
Conditions are non-						
standard						
Just "kinetically						
stable"					\quad	
:---						

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{2 ~ (a) (i) ~}$	second order (1)		2	
	rate proportional to the square of the (partial) pressure of NO OR the rate doubles as the square of the (partial) pressure of NO doubles (1) Conditional on correct order			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (a)(ii)	as (partial) pressure (of O_{2}) doubles rate doubles, so first order OR gradient of line is $\mathrm{kp}\left(\mathrm{O}_{2}\right)^{\mathrm{x}}$ so if this doubles the order (w.r.t. O_{2}) must be 1	Concentration of O_{2} instead of (partial) pressure		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (a)(iii)	$\text { rate }=k p(N O)^{2} p\left(O_{2}\right)$ Cq on orders in (i) and (ii)	$\begin{aligned} & \hline \text { rate }= \\ & \mathrm{k}[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right] \\ & \text { "R" for "rate" } \\ & \text { "K" for lower } \\ & \text { case " } k \text { " } \end{aligned}$	Any equation without k rate $=k$ $\mathrm{p}[\mathrm{NO}]^{2} \mathrm{p}\left[\mathrm{O}_{2}\right]$	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{2 ~ (a) (i v) ~}$	$\mathrm{atm}^{-2} \mathrm{~s}^{-1}$ ALLOW this mark, even if p[] used in (iii) Cq on (iii) [if overall second order, unit is atm If overall first order unit is s ${ }^{-1}$]$\mathrm{mol}^{-2} \mathrm{dm}^{6} \mathrm{~s}^{-1}$ if concs used in (iii)	1		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark		
$\mathbf{2 ~ (a) (v) ~}$	partial pressure/ concentration of NO is very small (so the collision frequency with O_{2} molecules is very low)	chance of a 3-body collision is slight	Equilibrium reaction	1		
Temp is too						
low					\quad	
:---						

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(i)	plot In k vs 1/T (1) giving straight line of gradient $-E_{a} / R$ OR $\mathrm{E}_{\mathrm{a}}=$-gradient $\times \mathrm{R}(\mathbf{1})$ STAND ALONE MARKS [2 ${ }^{\text {nd }}$ mark could be scored from (ii) if no reference to gradient here in (i) provided a clear expression is stated]	If plot 1/T vs In kand gradient is $-R / E_{a}$ (2) If plot In k vs 1/ RT and gradient - E_{a} (2)	"log"	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(ii)	$\begin{align*} & \mathrm{E}_{\mathrm{a}}=2.95 \times 10^{4} \times 8.314(1) \\ & \left(=245,145 \mathrm{~J} \mathrm{~mol}^{-1}\right) \\ & =245\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)(1) \tag{2} \end{align*}$ Correct answer with no working (2) Answers not to 3 SF can only score the $1^{\text {st }}$ mark Note: $-245\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ (1) but must be 3SF $245,000 \mathrm{~kJ}^{\left(\mathrm{mol}^{-1}\right)}$ (1) but must be 3SF $-245,000 \mathrm{~kJ} \mathrm{~mol}^{-1}(\mathbf{0})$ If 245 or -245 is given, units are not needed If 245,000 is given, units are essential DO NOT PENALISE K K^{-2} OR K K^{-1} in any unit	$245,000 \mathrm{~J}\left(\mathrm{~mol}^{-1}\right)$ [Note to examiners: give credit if candidate uses 2.95×10^{-4} or $1 / 2.95 \times 10^{4}$]		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{2 ~ (b) (i i i) ~}$	B			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3 ~ (a) ~}$	(aqueous) ethanol / ethanolic solution	ethanol alcohol propanone		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)(i)	$1^{\text {st }}$ Mark $\mathrm{S}_{\mathrm{N}} 1$ Or must be (at least) two steps (1) $2^{\text {nd }}$ Mark only the halogenoalkane is involved in the r.d.s. OR CN^{-}is not involved in rds (1)			2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)(ii)	first arrow must start from bond, not the carbon atom and not end past the bromine atom (1) structure of carbocation (1) Br^{-}not essential attack by cyanide, arrow must start from C or -ve charge on C not N and -ve charge must be present somewhere on ion; Ione pair not essential (1) IGNORE any references to rates of the steps	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{Br}$ completely correct $\mathrm{S}_{\mathrm{N}} 2$ version scores (1) See below		3

Acceptable $\mathrm{S}_{\mathrm{N}} 2$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3 ~ (c) ~}$	yes, because the CN group will cause a different chemical shift (1)	no, because the proton/ H atom environment has not changed (so the nmr spectra will be the same)	Just 'No' any mention one peak	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\begin{aligned} & \hline 3(d) \\ & \text { QWC } \end{aligned}$	$1^{\text {st }}$ mark (heat with) $\mathrm{NaOH} /$ sodium hydroxide (solution) OR heat to red heat with sodium and drop into water (1) $\mathbf{2}^{\text {nd }}$ mark acidify / add excess / neutralise with nitric acid / HNO_{3} (1) If HCl is added here, only the $1^{\text {st }}$ mark can score $3^{\text {rd }}$ mark add silver nitrate (solution) / AgNO_{3} (1) $4^{\text {th }}$ mark cream ppt (1) IGNORE reference to ammonia unless incorrect (e.g. soluble in dilute ammonia) Note: If no NaOH used only the $2^{\text {nd }}, 3^{\text {rd }}$ and $4^{\text {th }}$ marks can score If no acid is added, or if it is added before NaOH , only $3^{\text {rd }}$ and $4^{\text {th }}$ marks can score If order of addition is $\mathrm{NaOH}, \mathrm{AgNO}_{3}$, excess HNO_{3}, can score all marks If no NaOH and no HNO_{3}, can score $3^{\text {rd }}$ and $4^{\text {th }}$ marks If any reagent other than AgNO_{3}, including ammoniacal AgNO_{3}, is used, only $1^{\text {st }}$ and $2^{\text {nd }}$ marks can score. OR Mass spectroscopy (1) A doublet (1) of equal heights (1) in molecular ion peak (1) OR Mass spectroscopy (1) loss of m / e of 79 (1) and 81 (1) from molecular ion (1) OR Infrared spectroscopy (1) Measure/ record wavenumber (1) Absorption due to $\mathrm{C}-\mathrm{Br}$ stretch (1) Compare wavenumber with data book (1)	Names or formulae can be used, but if both used both must be correct Dilute sulphuric acid for nitric	add HNO_{3} concentrated HNO_{3} Yellow / offwhite ppt	4

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3 ~ (e) (i) ~}$	dilute acid/ (dilute) hydrochloric acid/ dilute sulphuric acid / dilute nitric acid OR aqueous NaOH followed by dilute acid $\mathbf{(1)}$	$\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) / \mathrm{H}^{+}(\mathrm{aq})$	concentrated acid OR Just "water"	2
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCOOH}$ (1) STAND ALONE	(CH3) $\mathrm{CCO}_{2} \mathrm{H} ;$ displayed formulae	$\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{O}_{2}$		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (e)(ii)	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCOOH}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \rightleftharpoons\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCOOCH}_{2} \mathrm{CH}_{3}+\mathrm{H}_{2} \mathrm{O}$ (1) for ethanol provided it is reacting with a carboxylic acid or acid chloride (1) for remainder of equation correct ALLOW $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCOCl}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCOOCH}_{2} \mathrm{CH}_{3}+\mathrm{HCl}$ (2) if acid chloride is produced in first step	"- CO_{2}-" for "-COO-"; " \rightarrow " for " \rightleftharpoons " full structural formulae " $\mathrm{C}_{2} \mathrm{H}_{5}$ " for " $\mathrm{CH}_{3} \mathrm{CH}_{2}$ "	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{HO}$	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(i)	(anhydrous) aluminium chloride [Name or formulae]	$\begin{aligned} & \mathrm{Al}_{2} \mathrm{Cl}_{6} \\ & \mathrm{AlBr}_{3} \mathrm{FeBr}_{3} \\ & \mathrm{FeCl}_{3} \end{aligned}$	Fe	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{4 ~ (b) (i) ~}$	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}{ }^{+}$	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CH}_{2}{ }^{+}$	$\mathrm{C}_{3} \mathrm{H}_{7}{ }^{+}$	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)(ii)	secondary carbocation is more stable than primary (1) primary carbocation $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}{ }^{+}\right)$rearranges to produce a secondary carbocation OR primary carbocation $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}{ }^{+}\right)$turns into a secondary carbocation OR a description of the rearrangement e.g. a hydrogen atom moves from the middle to the end (1)		any reference to stability of intermediate / product	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{4 ~ (c) (i) ~}$	First mark sodium nitrite / sodium nitrate(III)/ NaNO_{2} (1) Second mark hydrochloric acid / HCl(aq) (1) IGNORE concentration of acid $2^{\text {nd }}$ mark is conditional on NaNO_{2} or HNO_{2}	HNO_{2}	2	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{4 ~ (c) (i i) ~}$	below $0{ }^{\circ} \mathrm{C}$ reaction is too slow (1)		2	
	above $10^{\circ} \mathrm{C}$ the product/ benzenediazonium ions decomposes / hydrolysed (1)	HNO_{2} decomposes		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{4 ~ (c) (i i i) ~}$		IGNORE position of OH group. ONa or O^{-} instead of OH	$-\mathrm{N}=\mathrm{N}-\mathrm{O}-$	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (c)(iv)	the bonds around the $-\mathrm{N}=\mathrm{N}-$ bond are not linear (because of lone pairs) (1) Note: this could be shown on the diagram restricted rotation/ no (free) rotation around the $-\mathrm{N}=\mathrm{N}-(1)$	different groups on each N atom	2	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$4 \text { (d)(i) }$ QWC	First two marks add 2,4-dinitrophenylhydrazine/ Brady's reagent (1) orange/ yellow ppt (1) Allow this second mark if the name of the reagent is slightly incorrect e.g. 2,4-diphenylhydrazine OR IR absorption due to $\mathrm{C}=0$ stretch (1) at $1700 \mathrm{~cm}^{-1}$ (1) Third mark Does not give a silver mirror with ammoniacal silver nitrate (or Tollens' reagent) OR no red ppt/ stays blue with Fehling's or Benedict's solution OR $\mathrm{H}^{+} / \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ does not change from orange to green/ stays orange OR $\mathrm{H}^{+} / \mathrm{MnO}_{4}^{-}$does not change from purple to colourless/ stays purple	2,4-dnp(h) Any combination of yellow and orange Must be ppt Tollens'	Just "Red ppt" "solid" for "ppt" Iodoform	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (d)(ii)	the $C=0$ group is polar and the nucleophile attacks the δ^{+}carbon (1) whereas $\mathrm{C}=\mathrm{C}$ is non-polar/ electron-rich, the double bond/ π-bond is attacked by electrophiles (1) OR $C=O$ is polar and $C=C$ is non-polar (1) Nucleophile attacks the δ^{+}carbon in $\mathrm{C}=0$ and electrophiles attack the π /double bond in $\mathrm{C}=\mathrm{C}$, which is electron rich/ non-polar (1)			2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (d)(iii)	both curly arrows in $1^{\text {st }}$ diagram, attack by cyanide, arrow must start from C or -ve charge on C not N and -ve charge must be present somewhere on ion; Ione pair not essential. Arrow must start from bond between C and O and point towards the 0 (1) Intermediate - Ione pair not essential but negative charge is essential (1) Arrow from O (lone pair not needed) or negative charge to HCN or H^{+}, this can be shown on the diagram of the intermediate (1) If HCN is used the arrow from $\mathrm{H}-\mathrm{CN}$ bond is required Any other ketone or aldehyde, max (2)	curly arrow from 0 to H^{+}		3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{5}$ (a)(i)	Cr: [Ar] 3d Cu: $[$ Ar] 3d Both needed for the mark	$4 s^{1} 3 d^{5}$ $4 s^{1} 3 d^{10}$ $[A r]$ written in full		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{5 ~ (a) (i i) ~}$	all the others are $4 s^{2} /$ have full 4s orbital (1)	Cr and Cu/ they do not have a full 4s orbital	Just 'only have one electron in $4 s^{\prime}$ OR Have incomplete 4s orbital	2
	The d subshell is more stable when either half or fully filled OR A specific example of chromium having half-filled or copper having filled d sub-shell/ set of d orbitals which is more stable (1)	sub-energy levels d shell	Half-filled or filled d- orbital(s)	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{5}$ (b)(i)	Octahedral drawn must be 3-D IGNORE any or no charge	$-\mathrm{H}_{2} \mathrm{O}$ (bond to H) except on water molecules on left of Cr	1	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{5}$ (b)(ii)	Dative bond formed from electron pair/ lone pair on oxygen (of the water molecule) to the ion	A clear description of the dative bond	'dative' alone or from water	1
	This could be shown on a diagram		Just ustive dative ford from from	

$\left.\begin{array}{|l|l|l|l|l|}\hline \begin{array}{l}\text { Question } \\ \text { Number }\end{array} & \text { Correct Answer } & \text { Acceptable Answers } & \text { Reject } & \text { Mark } \\ \hline \text { 5 (b)(iii) } & {\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+\mathrm{OH}^{-} \rightarrow\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}\right]^{2+}+\mathrm{H}_{2} \mathrm{O}} \\ \mathrm{OR} \\ {\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+2 \mathrm{OH}^{-} \rightarrow\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right]^{+}+2 \mathrm{H}_{2} \mathrm{O}} \\ \mathrm{OR} \\ {\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+3 \mathrm{OH}^{-} \rightarrow \mathrm{Cr}(\mathrm{OH})_{3}+6 \mathrm{H}_{2} \mathrm{O}}\end{array}\right)$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{5}$ (b)(iv)	Forms a green precipitate (1) IGNORE initial colour of solution (which reacts or dissolves or changes to) a green solution (with excess reagent) (1) $2^{\text {nd }}$ mark is conditional on an initial ppt	any shade of green		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{5}$ (b)(v)	acid/ acidic	Amphoteric/ able to be deprotonated	Coloured ions/ ligand exchange/ deprotonation /partially filled d orbitals	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (c)(i)	Check working - correct answer can be obtained by not dividing by 2 for $2^{\text {nd }}$ mark and not multiplying by 2 for $4^{\text {th }}$ mark amount thiosulphate in titre $=0.0372 \mathrm{dm}^{3} \times 0.100 \mathrm{~mol} \mathrm{dm}$ $=3.72 \times 10^{-3} \mathrm{~mol}$ (1) amount $I_{2}=\frac{3.72 \times 10^{-3}}{2}(1)=1.86 \times 10^{-3} \mathrm{~mol}$ $2^{\text {nd }}$ mark cq on amount thiosulphate amount dichromate in $25 \mathrm{~cm}^{3}$ $=\frac{1.86 \times 10^{-3}}{3}(1)=6.2 \times 10^{-4} \mathrm{~mol}$ $3^{\text {rd }}$ mark Cq on amount I_{2} Total mass Cr $\begin{aligned} & =6.2 \times 10^{-4} \mathrm{~mol} \times 2 \times 10 \times 52 \mathrm{~g} \mathrm{~mol}^{-1}(\mathbf{1}) \\ & =0.645 \mathrm{~g} \\ & 4^{\text {th }} \text { mark cq on amount dichromate } \end{aligned}$ $\%$ of $\mathrm{Cr}=64.5 \%(\mathbf{1})$ IGNORE SF unless rounded to 1 SF cq on mass Cr , provided less than 1 g OR amount thiosulphate for whole sample $=0.0372 \mathrm{dm}^{3} \times 0.100 \mathrm{~mol} \mathrm{dm}^{-3} \times 10$ $=3.72 \times 10^{-2} \mathrm{~mol}$ (1) amount $\mathrm{I}_{2}=1.86 \times 10^{-2} \mathrm{~mol}$ (1) amount dichromate $=6.2 \times 10^{-3} \mathrm{~mol}$ (1) $\begin{aligned} & \operatorname{mass} \mathrm{Cr}=6.2 \times 10^{-3} \mathrm{~mol} \times 2 \times 52 \mathrm{~g} \mathrm{~mol}^{-1}(\mathbf{1}) \\ & =0.645 \mathrm{~g} \end{aligned}$ \% of $\mathrm{Cr}=64.5 \%$ (1) IGNORE SF unless rounded to 1 sf Mark consequentially, as above Note: Correct answer with no working (3)	64.48 \%		5

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (c)(ii)	Colour at the end point would be green which would prevent the loss of iodine colour being seen OR colour change at end point would be disguised by the colour of Cr^{3+}	Chromium instead of Cr^{3+}	end point disguised by colour of $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ / orange	1

