

Mark Scheme (Results) Summer 2008

GCE

GCE Chemistry (6246/02)

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the mark scheme

- 1 / means that the responses are alternatives and either answer should receive full credit.
- 2 () means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
- 3 [] words inside square brackets are instructions or guidance for examiners.
- 4 Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is **essential** to the answer
- ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- show clarity of expression
- construct and present coherent arguments
- demonstrate an effective use of grammar, punctuation and spelling.

Full marks will be awarded if the candidate has demonstrated the above abilities.

Questions where QWC is likely to be particularly important are indicated "QWC" in the mark scheme BUT this does not preclude others.

2

6246_02

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (a)	Heat/enthalpy/energy change (for a reaction) is independent of the path/route taken (depending only on the initial and final states) OR Heat/enthalpy/energy change (for a reaction) depends only on the initial and final states.	Enthalpy change for a direct path is the same as that of an indirect path.	enthalpy change for the reaction is the same as the sum of the values for each step.	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)	heat change (= $mC\Delta\theta$) = $30g \times 4.18 \text{ J} ^{\circ}\text{C} ^{-1}g^{-1} \times (30.1\text{-}23.7) ^{\circ}\text{C}$ for this expression or the answer = (+)803 (J). (1) Units do not have to be in the calculation. If candidate believes that 803 or - 803 is the value of ΔH next two marks are lost.	(+) 802.56 or - 803 or - 802.56		3
	$\Delta H_1 = -803 \text{ J} \div 0.0187 \text{ mol}$ = -43 for sign and value (rounded or unrounded) (1)	- 802.56 ÷ 0.0187		
	to 2sf only and kJ mol ⁻¹ (1) if value and units do not agree loses both second and third marks Correct answer plus some working (3)	-43000 J mol ⁻¹ (2)		

Question	Correct Answer	Acceptable	Reject	Mark
Question Number 1 (c)(i)	Multiplies the KHCO ₃ equation by 2 (1) and subtracts the K ₂ CO ₃ equation from it (1) This can come from a cycle. $\Delta H = 2\Delta H_2 - \Delta H_1 \text{ scores these first two marks}$ if $\Delta H = \Delta H_1 - 2\Delta H_2$ loses second and third marks if $\Delta H = \Delta H_1 + 2\Delta H_2$ loses second and third marks $\Delta H = 2\Delta H_2 - \Delta H_1 = (+29.3 \times 2) - (-43) \text{ kJ mol}^{-1} = (+)101.6 \text{ (kJ mol}^{-1}) (1)$ IGNORE SF Correct answer plus some working (3) Failing to multiply by 2 loses first mark above, but can then score max 2 as follows: $\Delta H = \Delta H_2 - \Delta H_1 (1) = +29.3 - (-43) \text{ kJ mol}^{-1} = (+)72.3 \text{ kJ mol}^{-1} (1).$ Third mark is consequential on candidate answer in 1(b), e.g. if 1(b) equals + 43 kJ	(+)101.5 if candidates uses - 42.9 from (b).	Reject	3 3
	$\Delta H = \Delta H_2 - \Delta H_1$ (1) = +29.3 - (-43) kJ mol ⁻¹ = (+)72.3 kJ mol ⁻¹ (1). Third mark is consequential on candidate			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (c)(ii) QWC	reaction in solution produces $H_2O(l)$ whereas thermal decomposition produces $H_2O(g)$ OR water produced in the decomposition is gaseous which is not the standard state OR energy is required to vapourise (liquid) water		heat required to vapourise water must be taken into account	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (d)	First mark: K_c is smaller as forward reaction is endothermic (1) Second mark: The second mark can only be awarded if the amount of reactant/product changes because of a change in K_c .		Equilibrium moves to left and so K falls scores (0)	2
	Increases the amount of KHCO $_3$ /reactants OR decreases amount K_2CO_3 /products (1). If K_c is said to be larger, then the second mark can be awarded consequentially for saying that the amount of KHCO $_3$ decreases, etc.	equilibrium shifts to the left	more KHCO ₃ than K ₂ CO ₃	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (a)(i)	Ignore any conditions (other than the need for aqueous acid) and ignore mechanisms whether correct or not.			5
	$CH_2=CH_2+HBr \rightarrow CH_3CH_2Br$ (1) mark being for whole equation;	HCl or HI in place of HBr to give the appropriate product C_2H_5 instead of CH_3CH_2		
	OR			
	$H_2C=CH_2 + H_2 \rightarrow CH_3CH_3$ and $CH_3CH_3 + Cl_2 \rightarrow CH_3CH_2Cl$ (+ HCl) (1)	+ Br ₂ to give bromoethane	+ I ₂	
	Then Mg (1) CH₃CH₂Br → CH₃CH₂MgBr (1) mark for the Grignard structure. Halogen must agree with the halogenoalkane used.	C ₂ H ₅ instead of CH ₃ CH ₂	CH₃CH₂BrMg	
	(CH3CH2MgBr) + CO2 (1)	dry ice for CO ₂		
	followed by H ⁺ (aq) (1) Any acid acceptable but it must be clear that it is dilute or aqueous. Note: CO ₂ + H ⁺ (aq) scores (1) only.	hydrochloric acid	e.g. HCl, conc HCl	
	An equivalent answer in words can score full marks but the halogenoalkane must be identified and the formula of the Grignard reagent must be included			
	OR for the last two marks: Grignard + HCHO and hydrolysis (to give propan-1-ol) (1) followed by oxidation of product with dichromate(VI) + acid or manganate(VII) + acid (1)	dishramata	الحال سنداد	
	This last mark can be awarded however the propan-1-ol is obtained.	dichromate or permanganate	HCl with MnO₄¯	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (a)(ii)	Nucleophile/nucleophilic reagent (1)	CIL CIL -		2
	attack by $CH_3CH_2^{\delta^-}$ of the Grignard on C^{δ^+} (of C=0) (1)	CH ₃ CH ₂ ⁻ C ₂ H ₅ for CH ₃ CH ₂		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(i)	$CH_3CH_2COCl + CH_3CH_2OH \rightarrow CH_3CH_2COOCH_2CH_3 + HCl (1)$	C ₂ H ₅ instead of CH ₃ CH ₂		2
	$CH_3CH_2COOH + CH_3CH_2OH \rightleftharpoons CH_3CH_2COOCH_2CH_3 + H_2O (1)$	-CO ₂ - instead of -COO-		
	Allow CH ₃ CH ₂ OCOCH ₂ CH ₃ or CH ₃ CH ₂ OC(O)CH ₂ CH ₃ for the ester since it is symmetrical.	→ instead of = or vice versa		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(ii)	Reaction with the acid chloride since it is not an equilibrium/not reversible/goes to completion (so the yield is higher)	loss of HCl as a gas pulls equilibrium	Reaction faster	1
		to the r.h.s.	HCl is a gas alone	
	There must be a reason as to why the acid chloride reaction is better for the mark.		Just 'HCl pulls eqm to the right'	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)(i)	Solution maintaining an almost constant pH (1)	resists change in pH withstands changes in pH	resists small changes in pH maintains pH	2
	for a small addition of acid or alkali/base (1)			
	Ignore any reference to the composition of the buffer, whether correct or not.			
	Ignore references to 'contaminated with' acid or alkali.			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)(ii)	Correct answer with unit and some working scores (4). Correct answer with unit but no working scores	Allsweis		4
	(3).			
	$[H^+] = 10^{-5.06} = 8.71 \times 10^{-6} \text{ mol dm}^{-3} (1)$			
	[HA] = 0.10 mol dm ⁻³ , so			
	$[A^{-}] = \frac{1.3 \times 10^{-5} \times 0.10}{8.71 \times 10^{-6}}$ (1) (= 0.149 mol dm ⁻³)			
	amount of A = 0.149 x 0.125 (= 0.0187 mol) (1) mass NaA = 0.0187 mol x 96 g mol = 1.79 g (1) MUST INCLUDE UNIT BUT IGNORE SF UNLESS ROUNDED TO 1 SF IN WORKING OR ANSWER.	1.8g	2g	
	OR			
	pH - p K_a = log([A ⁻] ÷ [HA]) = 5.06 - 4.886 = 0.174 (1)			
	$([A^{-}] \div [HA]) = 1.49 \text{ so } [A^{-}] = 0.149 \times 0.0125 = 0.0187 \text{ mol } (1)$	1.8g	2g	
	mass NaA =0.0187 mol x 96 g mol ⁻¹ = 1.79 g (1) MUST INCLUDE UNIT BUT IGNORE SF	1.09	-5	
	OR			
	Candidates who round the value of pK_a will get:			
	$pH = pK_a + log([A^-] \div [HA]) (1)$			
	pH - p K_a = log([A ⁻] ÷ [HA]) = 5.06 - 4.89 = 0.17 (1)			
	$([A^{-}] \div [HA]) = 1.48 \text{ so } [A^{-}] = 0.148 \times 0.0125 = 0.0185 \text{ mol } (1)$	1.8g	2g	
	mass NaA =0.0185 mol x 96 g mol ⁻¹ = 1.77/1.78 g (1) MUST INCLUDE UNIT BUT IGNORE SF		-5	

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
2 (c)(iii)	$([OH^{-}] = K_w / [H^{+}])$ $(=) 1.0 \times 10^{-14} \text{ mol}^2 \text{ dm}^{-6} \div 8.71 \times 10^{-6}$ mol dm ⁻³ (1) no need for units in calculation			2
	= 1.15 x 10 ⁻⁹ (mol dm ⁻³) (1) Ignore units even if wrong	1.148 x 10 ⁻⁹	1.14 x 10 ⁻⁹	
	The answer is consequential on their value of [H ⁺] in (ii) provided that the final answer is smaller than 10 ⁻⁷ mol dm ⁻³ , i.e. the solution must be acidic.			
	OR			
	pOH = 14 - pH = 8.94 (1)			
	$[OH^{-}] = 1.15 \times 10^{-9}$ (mol dm ⁻³) (1) Ignore units even if wrong			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)(iv) QWC	H ⁺ and OH - can be removed by reaction with HA or with A - (1) but since [A -] is small the ratio [A -] ÷ [HA] changes significantly and so does the pH (1)			2
	OR [A ⁻]÷ [HA] must remain nearly constant on addition of H ⁺ or OH ⁻ (1) but this is possibly only if large reserves of both are present (1)			
	For (1) only: If H ⁺ is added no/very little A ⁻ available to react so the pH will alter (1)			

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
3 (a)(i)	V-shape drawn (1) Ignore the bond angle		linear	2
	(except for linear) and ignore the number of		structure	
	lone pairs.			
			any	
			double	
			bonds	
			O-H-O	
	(justified on the basis of) 2 bond pairs and 2		any	
	Ione pairs repelling as far apart as possible/to		argument	
	minimum repulsion/to maximum separation		based on	
	(1)		three	
			pairs of	
	Note: The numbers of electron pairs can come		electrons	
	from the diagram, the drawing of the bond			
	being equivalent to the bond pair.		maximum	
			repulsion	
	If the diagram shows one lone pair but two			
	are mentioned here ignore the diagram.		lp-lp>bp-	
			bp alone	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (a)(ii)	For the first two marks:			3
	H ⁸⁺ attracted to Ione pair on (small) O on different molecule (1)			
	but S atom is too large/not sufficiently			
	electronegative for H-bonding (1) stand alone			
	For third mark:			
	boiling temperature of H_2O higher than that of H_2S			
	or melting temperature of H_2O higher than that of H_2S			
	or heat capacity of H_2O higher than that of H_2S			
	or density of ice less than that of liquid water			
	but solid H ₂ S denser than liquid H ₂ S (must give the states)			
	or water is a liquid but H ₂ S a gas (at room temperature) (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)(i)	Ligand (water) lost from the copper(II) ions or no ligands in the product (1) so no splitting of <i>d</i> -subshell/ <i>d</i> -orbitals or all <i>d</i> -orbitals are degenerate (1)	no electrons	no light	3
	so no electron transitions/d-d transitions (and so no colour) (1) Any mention of emission loses this mark. Any suggestion that copper has full d-subshell or changes its oxidation state after heating loses the last two marks.	no electrons promoted	no light absorbed alone	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)(ii)	Bonds formed between ligand/water and the copper(II) ion/copper/copper sulphate (1) There is no need to mention the nature of this bond.			2
	and bond formation is exothermic/gives out heat/gives out energy (1)		reaction is exothermic	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (c) QWC	Solubility increases from Be to Ba because: hydration enthalpy (of the cation) becomes less exothermic (from Be ²⁺ to Ba ²⁺) (1)	lattice enthalpy for lattice energy	'more endothermic' for 'less exothermic' atom or molecule for cation loses first mark only	3
	lattice energy becomes less exothermic (from $Be(OH)_2$ to $Ba(OH)_2$) (1)			
	but the change in lattice energy is dominant so the enthalpy of solution is more exothermic (and the compound is more soluble) (1)			
	OR			
	Hydration enthalpy (of cation) and lattice energy both exothermic (1) both decrease but lattice energy decreases more (1) enthalpy of solution is more exothermic (so compound is more soluble) (1)			
	OR			
	lattice energy and the hydration enthalpy (of the cation) both decrease/fall (1) but lattice energy decreases/falls more (than hydration enthalpy) (1) enthalpy of solution is more exothermic (so compound is more soluble) (1)			

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
3 (d)(i) QWC	silicon has (energetically available) 3 <i>d</i> -orbitals (1)	converse for CCl ₄		4
	for the lone pair on water to attack (1)			
	whereas carbon has no energetically accessible/available <i>d</i> -orbitals or has no 2 <i>d</i> orbitals (1)		no d- orbitals/CCl ₄ has no d- orbitals	
	so a strong C-Cl bond would need to break first/ the small C atom is obstructed by the large Cl atoms so the water cannot get close enough to form a bond (1)		anything based on C-Cl bond being stronger than Si-Cl	
			Cl ⁻ ions for Cl atoms	
	OR			
	(small) C atom surrounded by large Cl atoms (1)	converse for SiCl ₄	Cl ⁻ ions for Cl atoms	
	leads to obstruction/steric hindrance (1)			
	so the water cannot get close enough to form a bond via its lone pairs (1)			
	whereas the larger silicon atom will allow attack since the chlorine atoms are further apart (1)			
	The marks are for four ideas that are relevant to the steric hindrance argument, the <i>d</i> -orbital argument, or a mixture of these.			

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
3 (d)(ii)	First mark:		Any	3
	NaCl dissolves to give ions which do not react		reaction	
	further with water/are only solvated		to give	
			equal	
	OR		amounts	
			of HCl	
	$NaCl(s) + aq \rightarrow Na^{+}(aq) + Cl^{-}(aq)$ (1)		and	
			NaOH	
	Second mark:			
	$CH_3CH_2COO^- + H_2O \rightarrow CH_3CH_2COOH + OH^-$			
	OR			
	$CH_3CH_2COONa + H_2O \rightarrow CH_3CH_2COOH + NaOH$			
	(1)			
	OR			
	propanoate ions react with water to give			
	propanoic acid and hydroxide ions			
	OR			
	sodium propanoate reacts with water to give			
	propanoic acid and sodium hydroxide (1)			
	propunde dela dila sociali fiyaroxide (1)			
	Third mark: (stand-alone)			
	so $[H_3O^+]$ < $[OH^-]$ as a result of reaction (and			
	the solution is alkaline)			
	the solution is alkaline)			
	OR			
	hydroxide ions are formed/produced in the			
	reaction which makes the solution alkaline (1)			
	reaction willen makes the solution alkaline (1)	1		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(i)	The activation energy for the reaction is high or to ensure that more molecules have $E \ge E_a$.	E > E _a	to overcome E_a alone reactants kinetically stable; reactants thermodynamically stable	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(ii)	protonates the alcohol (1)		'as a catalyst' alone	2
	providing H ₂ O as the leaving group which is more easily displaced by the bromide ion/is a better leaving group than hydroxide (1)			
	OR			
	reacts with NaBr (1)			
	to give HBr (which is the attacking reagent) (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(iii)	H-bonding between water and the alcohol not strong enough to overcome hydrophobic interactions /effect of alkyl group (1) acid and alcohol form ionic species/C ₄ H ₉ OH ₂ ⁺ which is more soluble (1)	butyl group		2

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
4 (a)(iv)	Removes acid	neutralises HCl /HBr		1
		neutralises		
		acid		

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
4 (a)(v)	Removes water	Absorbs water		1
		Dries the		
		product		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(vi)	Electric heating mantle or sand bath or oil bath(1)	Water bath	heat under reflux no naked flame fume cupboard	2
	because the alcohol/reaction mixture/bromobutane is flammable or because the heating is uniform and less likely to crack the flask (1) This mark is conditional on the first being scored.		'volatile' for 'flammable'	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b) QWC	EITHER Intermediate (ion) in S _N 1 is planar (1) equal attack (by hydroxide ions) from either side (1) produces a racemic mixture (1) Note: Statement that the S _N 2 mechanism is consistent with the information cannot score any marks.	Intermediate carbocation is a planar molecule	intermediate molecule alone loses this mark attack by bromide ions	3
	OR $S_N 2$ involves attack from one side (1) so configuration of the product would be inverted (1) leading to retention of optical activity so must be $S_N 1$ (1) Statement that the reaction is $S_N 1$ alone scores zero.	forms one optical isomer only		

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
4 (c)(i)	Orange \rightarrow green			1

Question Number	Correct Answer	Acceptable Answers	Reject	Ma rk
4 (c)(ii)	$Cr_2O_7^{2-} + 6e^- + 14H^+ \rightarrow 2Cr^{3+} + 7H_2O$ (1)			2
	$\frac{(3CH_3CH(OH)CH_2CH_3 \rightarrow 3CH_3COCH_2CH_3 + 6H^+ + 6e^-)}{Cr_2O_7^{2^-} + 3CH_3CH(OH)CH_2CH_3 + 8H^+ \rightarrow 2Cr^{3^+} + 7H_2O + 3CH_3COCH_2CH_3 (1)}$	C ₄ H ₉ OH and C ₄ H ₈ O		
	No consequential marking on incorrect equations.	equation having non- cancelled H ⁺ ions	equation having non- cancelled	
		10113	electrons	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (c)(iii)	The broad peak/absorption/trough around 3400 cm ⁻¹ due to -OH (1)	3230 - 3550	broad transmission	2
	has disappeared in the product to be replaced by C=O at 1700 cm ⁻¹ (1)	1680 - 1750		
	If no reference to both groups responsible for the peaks then max (1)			
	OR			
	If no reference to both wavenumbers responsible for the peaks then max (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (d)(i)	Addition of barium ions pulls equilibrium to r.h.s. (1)	Allowers		2
	increases [H ⁺] and so lower pH/the pH falls (1) stand-alone mark		'so gets more acidic'	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (d)(ii)	lower pH/pH falls		'mixture is more acidic' for 'lower pH'	1